Pacific Coastal & Marine Science Center
Tsunamis & Earthquakes
|
Preliminary Analysis of the Tsunami Generated by the 23 June 2001 Peru EarthquakeBackgroundOn June 23, 2001 a Mw=8.4 earthquake struck near the coast of Peru, 110 miles (175 km) west of Arequipa or about 370 miles (595 km) southeast of Lima. A tsunami was generated by this earthquake that killed at least 20 people in the Camaná-Chala region. The tsunami magnitude for this earthquake calculated by Katsuyuki Abe, Earthquake Research Institute, is Mt=8.1. A preliminary analysis of the tsunami generated by this earthquake is presented on this web page. For up-to-date information on the earthquake and its aftershocks in addition to news links for the earthquake and tsunami, please see the NEIC Bulletin for this event. A model for tsunami generation and local propagation is presented here. For other models of far-field (trans-Pacific) propagation and observations of the tsunami, please see the NOAA/PMEL Web Link compilation for this tsunami. Sedimentary deposits from the June 23, 2001 Peru tsunami were studied by a team of scientist from the US Geological Survey, University of California at Santa Cruz, University of Southern California, and government agencies and universities in Peru. Photographs of sedimentary deposits from the tsunami and field measurements of inundation distances and runup elevations are available at http://walrus.wr.usgs.gov/tsunami/peru2/. Tsunami GenerationWe calculate the tsunami generated by this earthquake using a seismic inversion of the rupture process determined by Kikuchi and Yamanaka at the Earthquake Research Institute, Univ. of Tokyo, Japan (from 7/12/01). Using the shallow-dipping nodal plane consistent with an interplate thrust earthquake along the Peru subduction zone, they determine the moment distribution over a rupture area 210 km long by 120 km wide (Mw=8.2). Details of their analysis are given on the Special Event Page for the Peru earthquake. To calculate a slip distribution for the earthquake, we use a depth-dependent shear modulus function derived by Bilek and Lay (2000) from the source duration analysis of past events in this region. Coseismic vertical displacement predicted for this earthquake is shown below (color scale represents upliftsurrounding area is subsidence):
In performing these calculations, we note that not only does spatial variability of slip magnitude have a significant effect on the coseismic vertical displacement field (Geist and Dmowska, 1999), but variations in rake angle within the rupture zone also have a measurable effect on vertical surface displacement. The rupture process of this earthquake may be linked to initial arc-parallel stresses caused by the bend in the South American subduction zone in this region and/or subduction of the Nazca Ridge (Macharé and Ortlieb, 1992). The Local TsunamiCoseismic vertical displacement provides the initial conditions for tsunami propagation. Because the rupture area extended landward of the coastline, only part of the coseismic deformation was transferred to generating a tsunami. Local propagation is calculated using a finite-difference approximation to the linear long-wave equations and the 2-minute Smith and Sandwell (1997) bathymetric data (Copyright). An 8 s time step was used in the propagation model. Reflection boundary conditions were imposed at the 50 m isobath. At this water depth, synthetic marigrams near offshore coastal communities are shown below. The actual wave response at the coast would have been modified by nearshore bathymetric changes and shoaling of the wave. |