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[1] In this, the first of a pair of papers which address the simulation and automated
measurement of well-sorted natural granular material, a method is presented for simulation
of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to
have a flexible, yet computationally and theoretically simple, suite of tools with well
constrained and well known statistical properties, in order to simulate realistic granular
material as a discrete element model with realistic size and shape distributions, for a variety
of purposes. The stochastic modeling framework is based on three-dimensional
tessellations with variable degrees of order in particle-packing arrangement. Examples of
sediments with a variety of particle size distributions and spatial variability in grain size are
presented. The relationship between particle shape and porosity conforms to published
data. The immediate application is testing new algorithms for automated measurements of
particle properties (mean and standard deviation of particle sizes, and apparent porosity)
from images of natural sediment, as detailed in the second of this pair of papers. The model

could also prove useful for simulating specific depositional structures found in natural
sediments, the result of physical alterations to packing and grain fabric, using discrete
particle flow models. While the principal focus here is on naturally occurring sediment and
sedimentary rock, the methods presented might also be useful for simulations of similar
granular or cellular material encountered in engineering, industrial and life sciences.

Citation: Buscombe, D., and D. M. Rubin (2012), Advances in the simulation and automated measurement of well-sorted
granular material: 1. Simulation, J. Geophys. Res., 117, F02001, doi:10.1029/2011JF001974.

1. Introduction

1.1. Motivation

[2] This is the first of a pair of papers (the second being
Buscombe and Rubin [2012, hereinafter, part 2]) on the
particle-scale structure of natural granular material (sedi-
ment), in which a new approach to the three-dimensional
simulation of such materials has been developed principally
in order to meet the needs of two expanding research areas,
namely: 1) automated methods for in situ sampling of
granular properties from images of sediment; and 2) the
development of discrete particle models for investigating the
physics of granular and fluid-granular flows.

[3] Measurements of granular properties from images of
planar sections through volumes of intact consolidated
granular material [e.g., Fara and Scheidegger, 1961; Preston
and Davis, 1976; Lin, 1982; Tovey and Hounslow, 1995;
Prince et al., 1995; Van den Berg et al., 2002; Neupauer and
Powell, 2005; Torabi et al., 2008] and unconsolidated
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granular surfaces and vertical sections [e.g., Rubin, 2004;
Carbonneau et al., 2004; Graham et al., 2005; Buscombe,
2008; Buscombe and Masselink, 2009; Warrick et al., 2009;
Buscombe et al., 2010] are designed to give rapid yet highly
accurate estimates of sediment structure (for example, pack-
ing, porosity, and dominant orientation) and particle properties
(principally, particle size, shape, concentration, packing) in the
field and laboratory. The goal is to estimate particle size sta-
tistics in situ using images of the surface of sediment which is
interacting with fluid flows at a given instant in time. In par-
ticular, these techniques have the potential to allow much more
dense sampling and analysis of sediment in the field. Such
information aids the remote characterization of the sea or river
bed in between stages of motion [Barnard et al., 2007; Rubin
et al, 2010]. These advances may also allow imaging to
replace or to be used in conjunction with more traditional
surface-sampling procedures for sands such as epoxy peels for
vertical sections [e.g., Gretzen and Levey, 1982] and petro-
leum jelly cards [e.g., Ingle, 1966].

[4] The lack of a robust particle-size standard for validat-
ing measurements from such imagery arises due to the fact
that, in a plan view image of a granular material, as the
geometric projection of a 3D surface onto a 2D plane (such
as those in Figure 1), particles overlap (parts of particles
are sitting on top of others, wholly or partially obscuring
those underneath). There are no visible voids, only visible
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Figure 1. Example images of the surfaces of well-sorted natural sediment from 8 distinct populations
from fluvial, coastal and shelf environments, with particle sizes ranging from silt to cobble.

surface and parts of subsurface particles. Therefore, neither
measurements of the diameters of completely visible parti-
cles nor bulk measurements of the surface layers such as
sieving are appropriate metrics against which to evaluate the
performance of direct statistical estimates of particle prop-
erties which use information from the entire image [Rubin,
2004; Buscombe et al., 2010; Carbonneau et al., 2004,
2005]. For a comprehensive review of the development of
these statistical methods, as well as alternative methodolo-
gies which use thresholding techniques to isolate individual
particles, the reader is referred to Buscombe et al. [2010].

[5] Motivated by this problem of evaluating statistical
image processing methods for particle sizing, the solution
of Barnard et al. [2007] and Buscombe et al. [2010] was
to validate their respective measurement techniques by car-
rying out manual point counts of particle diameters on the
screen. A regular grid was overlain on each image, and
the intermediate diameters of every particle or partial par-
ticle lying at each grid intersection was measured. This
method is satisfactory but laborious and therefore prohibi-
tive of evaluating measurements from a very large set of
images. In addition, in order to characterize the true pop-
ulation mean about 100 point count measurements are
required for well sorted sands. This increases to an unknown
number —possibly every particle in the image —if the entire
distribution of sizes is to be characterized properly [Church
et al., 1987]. A final disadvantage of such an approach is
that it inevitably introduces a fine bias in estimates of the
population particle size statistics, by counting the partial
axes of some particles. Therefore, some (as yet unknown)
stereology is required which relates the size distribution of
the axes of apparent particles comprising the surface to the
actual distribution of diameters of those particles (this
problem is considered further in part 2).

[6] Appropriate simulations of granular materials can
readily overcome these disadvantages and therefore allow
further progress in these measurement techniques. First and
foremost, only simulated material can produce large sets of
populations of particles quickly, with a range of specified
particle size, particle shape, packing, porosity and other
properties. Moreover, these properties can be known pre-
cisely, essential for the purposes of testing automated mea-
surement approaches. In addition, such simulations can

provide a means by which to quantify the discrepancy
between bulk particle size statistics and those derived from
just the visible particles at the surface. Finally, the use of
sediment models allow the total errors of measurement
methods to be understood, for example by controlling opti-
cal aspects such as poor or uneven lighting, blur, distortion
and poor resolution.

[7] Granular material is commonly modeled as discrete
elements (grains), the interactions between which are exer-
ted through contacts depending on boundary conditions and
external forces applied, but also crucially on the way the
grains are packaged (herein referred to by the common
sedimentological term ‘packing’), and on the distribution of
the sizes and shapes of the grains [Mehta, 2007]. Due to the
structural complexities of many natural granular materials,
it is useful to have algorithms capable of simulating particle
assemblages which are idealized and have known or well
constrained statistical properties, but which are also as real-
istic as possible. Such simulations are an essential compo-
nent of many theoretical studies of granular physics [Mehta,
2007], forming the basis of studies into the static and kine-
matic properties of sediments. For example, simulating the
micro-geometry of granular material aids the study of the
flow of acoustic or electromagnetic energy (primarily optical
and electrical), or water, through the material [e.g., Graton and
Fraser, 1935; Bear, 1972; Tovey and Hounslow, 1995]. Such
static simulations are therefore useful in many areas of sedi-
mentary geology, especially the study of aquifers, and geo-
physical surveying. In addition, the simulation of realistic
granular material made up of discrete particles is itself poten-
tially useful in areas such as the direct numerical simulation of
fluid-granular flows [e.g., Drake and Calantoni, 2001;
Schmeeckle and Nelson, 2003], and a multitude of theoretical
studies of granular properties for medical and chemical/
industrial applications as well as geology and geophysics.

[8] Most numerical simulations of granular beds to date
have invoked the use of spheres [e.g., Bernal and Mason,
1960; Jodrey and Tory, 1979; Moscinski and Bargiel, 1991]
or ellipsoids [e.g., Potapov and Campbell, 1998; Favier et al.,
1999] of uniform or symmetrical size-distributions. However,
natural particles such as sand can be modeled as convex
polyhedra. That is to say, all interior angles are less than
180 degrees. Models which simulate particles as polyhedra
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(in three dimensions) tend to generate a distribution of shapes
[e.g., Ghaboussi and Barbosa, 1990; Latham and Munjiza,
2004]. However, they also tend to be computationally expen-
sive and time-consuming due to the necessity for contact-
detection algorithms [e.g., Jensen et al., 1999]. Moreover,
little attention is generally paid to the realism of the size- and
shape-distributions of the simulated material, and whether the
quasi-crystalline structure of many natural particles, and the
spectrum of interlocking arrangements (packing) are ade-
quately simulated.

1.2. Objectives

[9] The principal objective of this paper is to develop meth-
ods to simulate sediments such as those in Figure 1, motivated
by an observation that further development of techniques for
automated measurement of such granular material is hampered
by a lack of a true standard against which methods can be
validated, as well as the laborious nature of these validation
procedures. In doing so, a stochastic modeling framework has
been developed which generates populations of particles which
are qualitatively and quantitatively realistic, with a formalized
yet simple mathematical framework, and with modest com-
puting power. As such, this technique might find more general
applicability in studies of granular packing and flows.

[10] In this contribution we develop a new approach to the
simulation of three-dimensional populations of particles,
packed into sediment beds. Both the individual particles and
the bulk properties of the simulated granular material are
realistic enough for application in the further development of
automated estimation of particle properties, which is the
subject of part 2. Therein, images of the planform of volumes
of simulated particles aid the testing of new measurement
techniques for the direct and completely automated estimate
of the standard deviation of the distribution of particle sizes
within an image of sediment. It is a direct estimate, with an
analytical derivation, using only the information contained
within the image in the frequency domain. As such the
method closely follows Buscombe et al. [2010] who devel-
oped a similar method for mean particle size.

[11] Buscombe et al. [2010] developed a simple set of
simulations of two-dimensional particle assemblages which
allowed them to ascribe individual contributions to total error
of an automated statistical algorithm for estimation of mean
particle size caused by inter- and intraparticle shading.
Significant advances have been made to that prototype
model in the current contribution. These include an exten-
sion to three dimensions and a mathematical formalism of the
modeling framework which allows the sediment to be simu-
lated as a random field with known mathematical properties
rather than vector drawings. This has allowed greater flexi-
bility in simulating different particle packing, and a greater
spectrum of possible size and shape distributions. The col-
lective result is that the simulations, and therefore the images
of their surfaces, are much more akin to natural granular
material than those of Buscombe et al. [2010].

2. Simulation of Granular Material

[12] The approach taken in this contribution is to simulate
assemblages of individual discrete solid particles (granular
material) which arise from a statistical continuum, namely
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the Voronoi tessellation (defined below) of a point distri-
bution. Each point in this distribution is therefore a particle
center, and each vertex of the surrounding Voronoi cell is a
closed particle boundary. Structural features of the resulting
assemblage of particles (granular material), such as packing
and distributions of size, are thus emergent properties of the
relative location of the particle centers.

[13] The basic method is to generate a spatial distribution
of points in 3D whose Voronoi tessellation produces cells
which have the essential intrinsic properties of realistic
particles. After formally introducing the suitability of the
Voronoi tessellation as an analog for a collection of gran-
ular particles (section 2.1), given the innumerable means by
which the distribution of particle centers might be realized,
we necessarily consider only a few examples of point-
generating processes and their resulting granular materials
(section 2.2). Two basic classifications as considered,
namely 1) conforming to an algorithm (a spatial point
process; section 2.2.1) or 2) based on a discrete random
field (section 2.2.2).

2.1. The Modified Voronoi Tessellation as a Model
for Natural Particles

[14] Consider a non-cohesive granular material represented
as a composite body composed of two phases: particles
(solids) and voids (pores), occupying differing spatial posi-
tions (x, i.e., no particle overlap). The characteristic function of
a two-phase (particle p, pore or void v) body of bulk volume V
with sub-volumes V), and V, is defined as [e.g., Sen, 1984]:

1 x€v,

where x might be a pixel (for a granular material simulated in
2D) or a voxel (for a 3D material, the default used in this study
unless otherwise stated). Only the solid phase is simulated.
Void fraction is therefore ¢ = V,/V. Therefore the spatial dis-
tribution of the void phase —the pore space network —is an
emergent property of the simulation of the solid phase.

[15] In a three-dimensional region 2 consisting of points
(particle centers) {zm}}\mil, R,, is defined as the set in {2 con-
sisting of those points which are closer to z,, than any other z,;

Ry =xEQ, |x—zy| < |x—2z, (2)

wheren=1, ., N(n#m)and m=1, ., M. Given a point density v,
the centroids (or ‘centers of mass’) of R, are defined by:

zh = HRI—,,,\/XV(X) dx. 3)

[16] The set of regions {R,,}"_ are called Voronoi cells.

In this study 2 is always the unit cube (or unit square for 2D
simulations), therefore v is defined by the number of particles
required, M. The Voronoi tessellation is analogous to the
simultaneous ‘growth’ of particles in 3 dimensions, each from
a point outwards in all directions at an identical rate. Particles
which intersect with the boundary of {2 are removed.

[17] The Voronoi tessellation creates only the solid phase
V. Pore space V,, is created by stopping particle ‘growth’ at
a user-defined ¢. A porosity of ¢ = 0 would therefore allow

3of 17



F02001

BUSCOMBE AND RUBIN: SIMULATION AND STRUCTURE OF SEDIMENT, 1

F02001

Figure 2. Sections through a small volume of simulated granular material (made using the CVT-Halton
packing model), in order to visualize the network of pore spaces between grains. The volumetric void frac-

tion in this example is 30%.

all vertices of the particles to touch. This basic simulation of
granular material means that at any ¢ > 0, no particles touch
and void spaces between adjacent particles are uniform in
width. The method therefore requires a modification to the
manner in which void spaces are distributed in order to make
them more similar to naturally occurring granular materials.
This change has particular relevance for uses of simulated
granular material as a porous medium.

[18] Adopting the terminology of Koplik et al. [1984] for
idealized porous media, the network voids consist of approx-
imately cylindrical ‘throats’ connecting the junctions between
grains called ‘pores’. In the current modeling approach, all
simulations are 3D and have an inherent porosity. Pores, when
viewed in section, possess a wide size and shape distribution,
but pore throats have approximately equal diameter and scale
with bulk porosity. This is likely at odds with many natural
sediments. This does not matter if the purpose of simulating
particles is to use them in a dynamical model (e.g., granular
flow). Nor does it affect the utility of the modeling approach as
a means by which to produce simulated sediment surfaces for
the purposes of testing automated measurement methods
because the surface, as a 2D projection, has no apparent void
space because subsurface grains are visible in the void spaces
(see the companion paper, part 2). This is because porosity can
be modified easily and independent of particle size and shape.
Although the micro-geometry of Voronoi cells in 2D have
been used in modeling pore space networks relevant to bulk
permeability and conductivity characteristics, essentially
because the network of pores and throats is random [e.g.,
Vrettos et al., 1989; Nagaya and Ishibashi, 1998], it might
however be a limitation if the simulations were to be used for
modeling flows through the material.

[19] In order to counter the approximately constant simu-
lated pore throats, one could partially erode a percentage of

grains chosen at random. However, that would increase the
bulk porosity of the material and alter the shape distribution
in an unknown and uncontrolled manner. A preferable
method would therefore be to modify the locations of the
particle centers. In its simplest form this could be an addition/
subtraction of a random number to 1 or all of the 3 coordi-
nates which define the location of each particle center. This
has the effect of moving the grains into or out of previously
occupied pore space, thus widening the distribution of pore
throat diameters. In practice, this exercise is carried out with a
necessary constraint that this does not cause particle overlap.
To illustrate the resulting non-uniformity of pore throats,
various sections through a simulation with a small number of
grains are shown in Figure 2. The percentage of particle
locations modified becomes a free parameter. In an applica-
tion more advanced than carried out here, the spatial unifor-
mity of pores could also be a free parameter (i.e., pore throats
are altered according to some spatial density function). This
method preserves the shape distribution, and is also carried
out in such a way as to preserve the bulk porosity of the
material (some pore spaces get larger, others smaller, but the
average space remains the same).

[20] The convex hull of points within each Voronoi cell
create non-overlapping convex polyhedra with quasi-crystalline
faces, and without holes (for a mathematical review of random
tessellations see Moller [1989]). The Voronoi tessellation is
therefore an appropriate model of granular material composed
of close packings of individual (discrete) particles, as well as
mathematically and computationally simple. Barndorff-
Nielsen [1989] observed that Voronoi cells would be a suit-
able model for granular material, and that the range of shapes
created are reminiscent of quartz sand particles. Figure 3
shows an example image of quartz sand particles taken with
a macro lens. The particle centers have been (somewhat
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Figure 3. Voronoi tessellations as a model for natural gran-
ular beds. Particle centers in this photograph of a surface of
well-sorted sand have been identified by eye in the image,
and the Voronoi tessellation overlain. The tessellation is not
a perfect model for the grain outlines, however the statistics
of cell area are almost identical to those of apparent particle
area. In addition, the shapes of particles are qualitatively
similar.

crudely) identified by eye. The Voronoi tessellation for this set
of points v is overlain. It is not intended to exactly mimic the
structure of grains within the photograph, rather to show the
close resemblance in particle size and shape distribution
compared with the particles within the image. Instances of
over-estimation of particle area are approximately the same in
number as instances of under-estimation, so the first-order
statistics of area are almost identical.

[21] In this study two types of Voronoi tessellations have
been employed, in order to create a greater variety of simu-
lations with respect to granular structure. Other types of
Voronoi tessellation [e.g., Ferenc and Neda, 2007] could
equally be used for further variety. The first we term the
Normal Voronoi Tessellation (hereafter NVT), so-called
because the generating points do not in general coincide with
the particle’s center of mass, i.e., z, # z% (see review by
Ferenc and Neda [2007]). The second is the Centroidal
Voronoi tessellation (CVT) (see review by Du et al. [1999]),
where z,, = zk. Such centroids are computed using the
algorithm detailed by Du et al. [1999], which minimizes the
integral of the square of the distance between each point in
the region (x) and its nearest generator (z,,).

2.2. Geometric Framework: Generating
Particle Locations

[22] The modeling framework has been defined in terms
of particle and pore generation, but not particle location,
which is the subject of this section. By using a Voronoi
tessellation approach, particles and the geometric basis for
packing are defined entirely by the location of particle cen-
ters. The particle centers may be simulated using simple
point-generating models called ‘processes’ which may be
statistically homogeneous or inhomogeneous in space, and
random or with some degree of determinism in the spatial
distribution. All such types are considered here.
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[23] Numerous point processes can be used to simulate
granular material. As will be shown, different spatial dis-
tributions of particle centers create granular simulations with
different ensemble properties. An understanding of these
properties opens up the opportunity for creating simulations of
a specific granular material or tailored to a specific use.
Choosing the appropriate point process to create a spatial
distribution of particle centers is the simplest and most flexible
way to tailor the properties of the simulated granular material
to the needs of the user. It is therefore useful to outline and
explore the properties of a variety of spatial point processes.

[24] In all cases, increasing numbers of {z,,} are generated
in a constant volume in order to simulate granular material
composed of finer and finer particles. Hundreds of realiza-
tions, a combination of the methods summarized in Figure 4
and containing up to 128,000 discrete particles, have been
generated, for each combination of methods, with modest
computing power. An example of a simulated granular mate-
rial with 32,000 particles is shown in Figure 5. The coordinates
of each particle center, center of mass, and vertices are known
precisely, therefore calculations of volume, surface area, par-
ticle contacts (coordination number), and distance to neigh-
boring particles can be made for each particle.

[25] The remainder of this section will be organized with
reference to Figure 4 which is a flow diagram of the main
options and processes used in this study in order to generate
a variety of spatial point distributions. This is, of course,
necessarily just a limited subset of algorithms which could
be employed in order for the purposes of simulating granular
material using a Voronoi tessellation approach. The concepts
of NVT and CVT have been introduced in section 2.1. As
competing methods through which the particles are created,
they can be used in conjunction with spatial distributions
generated by any of the methods below. Having decided
whether the granular material will be NVT or CVT-based, a
decision is made if the point-distribution conforms to an
assumed or statistically generated spatial density function
(Figure 4). Note that in order to illustrate (in print) the dif-
ferences in packing structures of the simulated granular
material, it is necessary to display 2D sections (Figure 6),
but all simulations are 3D unless otherwise stated.

2.2.1. Spatial Density Function Generated
by Statistical “Rules”

[26] A model for granular material based on a Voronoi
tessellation requires a way of generating the set of particle
locations, which we term a point process. These point pro-
cesses are basically statistical rules governing the relative
location of collections of points in 3 dimensional space, the
Voronoi tessellation of which creates assemblages of cells
(particles) with different emergent properties such as particle
packing and size distribution. We classify point processes
which conform to rules as either 1) spatially homogeneous
which, as the name suggests, do not exhibit spatial clustering,
or 2) spatially inhomogeneous processes which do cluster.

[27] To illustrate these principles we have limited this
study to just three simple homogeneous processes whose
quantitative properties are well known, but many more could
be considered which would create statistically different
assemblages of particles with other packings. The first of the
point processes used here is termed a Poisson distribution
which uses a random number generator to create coordinates
which make up the point distribution (Figure 6a). This,
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Figure 4. Flow diagram summarizing the methods used in this paper for simulating a spatial point dis-
tribution with desired characteristics, as detailed in section 2.2.1.

in conjunction with the NVT framework, produces packings
which are as non-deterministic as a homogeneous point-
generating process will allow (although beds can be less
deterministic if the CVT framework or inhomogeneous
point-generating processes are used; see below).

[28] In order to simulate significantly differing degrees of
order in the packing arrangement of particles, two point-
generating processes have been used within the CVT
framework. The first, termed CVT-Uniform, begins with a
random (Poisson) point distribution and iterates slowly
toward a Uniform spatial distribution (i.e., a regular grid).
However, it is curtailed after just a few iterations so the
resulting beds have a quasi-random structure (Figure 6b).
The second point-generating function within a CVT frame-
work (third and last of the homogeneous processes consid-
ered here) is the Halton distribution [Halton, 1960], which
uses pairs of prime numbers for a base. For example, for the
primes 5 and 7 the x coordinates are created by first dividing
the 2 by 51, 52, ., 5™, The CVT-Halton point structure is
essentially deterministic and therefore creates synthetic
beds containing particles with the most ordered packing
arrangements (close to hexagonal; Figure 6c¢).

Figure 5. Example of a simulated granular material with
32,000 particles in the unit cube. This was generated using
a NVT-Poisson approach. Sections through such material
are required in order to visualize pore space, e.g., Figure 2.
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Figure 6. Sections through volumes of simulated granular
material similar to Figure 5 using the (a) NVT-Poisson;
(b) CVT-Uniform; and (¢c) CVT-Halton underlying spatial
point processes. Note that particle packing becomes increas-
ingly more regular (deterministic) (Figures 6a—6c¢).
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[29] The first inhomogeneous process, which we term the
Cluster Poisson (CP) model, uses an underlying homoge-
neous Poisson spatial distribution and adds a clustering
mechanism [Martinez and Martinez, 2002]. Adopting the
terminology of Bordenave and Torrisi [2007], first a defined
number, M, of ‘parent’ points are generated to form a
homogeneous spatial distribution. Then a number of
‘children’ for each parent are generated according to a
probability distribution. In this study a Poisson distribution is
used with intensity A, which defines the mean number of
children per parent. The relative positions of the children to
their parents are independently distributed according to a
bivariate distribution. Here we use a bivariate normal dis-
tribution that is centered at each parent, but other distribution
shapes could be used [e.g., Martinez and Martinez, 2002].
The covariance of the distribution is given by o°/, where
I is an identity matrix and variance o dictates the spread
of each cluster around each parent. The points retained in
the final spatial pattern are the children only.

[30] Figure 7 shows the number of particles generated by
covariation in two free parameters of the CP model, intensity
of clustering A and number of parents, M. Here, the spread
parameter o is fixed. This was constructed empirically by
generating sets of point distributions covering this entire
parameter space. The effect of increasing o for a given M
and )\ is a linear increase in mean particle diameter
(Figure 8a), associated with a change in size-distribution
shape (Figure 8b). Controlling the shape of the particle size
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Figure 7. Number of particles (shade corresponding to color bar) generated as a function of two free
parameters of the CP-model for simulated granular material. M is the number of ‘parent’ particles and A
is a measure of the clustering around those parent locations. For all cases, a fixed o2 = 0.2 has been used.
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Figure 8. Effect of varying o on (a) particle diameter statistics and (b) p frequency distributions in
CP-model generated granular material with fixed M = 1000 and A = 10.

distribution can be carried out in a consistent manner using
the o® parameter (Figure 8b). Packing and the statistics of
particle size are sensitive to small changes in these para-
meters, illustrated by Figure 9 which depicts the effects of
increasing \ for a given o* and M. For clarity, these are 2D
sections through the generated volumes. Size-distributions
(and the total number of particles, M) are shown for selected
sections. While the clustering is quite pronounced, truly
bimodal size-distributions are very difficult to achieve using
this approach.

[31] The second inhomogeneous spatial point process is
the Strauss [Ripley, 1981], the last rule-following inhomo-
geneous process considered in this contribution. The Strauss
model is one where a specified fraction of particle centers is
allowed within a distance of any given particle center. Each
point is generated in turn using a random number generator,
but if there are existing points within radius 0, then it is
accepted with probability ¢”, where ¢ is an ‘inhibition’
parameter which specifies the fraction of particle centers
allowed within 6, and b represents the number of events
already closer than ¢ [Martinez and Martinez, 2002]. A point
is therefore accepted if either of the following conditions are
satisfied: 1) b = 0; or 2) a number randomly generated from a
normal distribution < ¢”. The process repeats until there are
M particle centers.

2.2.2. Spatial Density Function Generated
Using an Assumed Random Field

[32] A second means by which particle centers are gener-
ated is by creating a random field and utilizing some aspect
of that field which varies in space to define a set of points
which become the particle centers. This general approach
serves as a means to generate a wider range of particle
assemblages, beyond those created using some statistical
point-generating algorithm as detailed above, with alternate
statistics of packing. However, the quantitative properties of
generated points may not be well known or mathematically
constrained.

[33] One illustration of this approach is to define particle
locations using a spatial function over a 3-dimensional
region. The magnitude of the values of this function are

unimportant. What is important is the relative spatial
locations of peaks and troughs in these values, as defined
by some threshold which could, for the present purposes,
be either arbitrary or deterministic. Normalizing by the
sum of all values, one obtains a discrete probability den-
sity function (PDF) associated with each subregion. By
assigning an arbitrary order to these subregions, the sum of
the PDF subregion is the CDF (cumulative density function)
for that subregion. Now given an arbitrary random value a,
the subregion whose CDF value just exceeds a is located.
Sample points are obtained by successively and arbitrarily
choosing from within this subregion. Given enough sample
points, the statistics for this sample will tend to the input PDF.

[34] To illustrate this process, images having 1/f
(f = frequency) amplitude spectrum properties (known as
‘pink noise’) were generated. Increasing powers of f create
three-dimensional images with greater autocorrelation (larger
‘blobs’). These images were normalized to create a PDF and
a point pattern generated consisting of 1000 points distrib-
uted according to that PDF. For simplicity we illustrate a
random section through a volume of granular material
resulting from this process. Figure 10 shows the outputs for
(top) 1/f° noise and (bottom) 1/£%, (middle) the point pattern,
and (right) the associated Voronoi tessellation. Increasing
powers of f tend to create particles with greater spread in
their size-distribution. For example, the 1/f> spectrum shown
in Figure 10 produces a size-distribution with percentiles
dio =61, dsg = 164, doy = 297, compared to the 1/f0'5 which
produces a size-distribution typified by d;o = 121, dso = 210,
doo = 311 (all units pixels).

[35] Instead of artificially generating a random field, as
above, any suitable existing random field may be used. For
example, an image of natural sediment with depositional
structures, in this instance as a 2D random field, might also
serve as an assumed point density function on which to base
the sedimentary simulation. In this case, the basis for the
generation of the point distribution are the regions of light
and dark shading in the sediment (defined relative to some
threshold intensity). For example, Figure 1la depicts the
image of a horizontal section through Colorado River sand
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Figure 9. Examples of sections through synthetic granular material generated using the CP-model with
small numbers of particles (number of particles, M < 1000). The intensity of clustering for a given number
and location of ‘parents’ (the cluster centers which are identical for all shown simulations) (a—i) increases
due to increasing values of the \ parameter (10 to 100), which defines the number of ‘children’ per parent
(see text for explanation). The number of parents, about which clustering takes place, is fixed (M = 6) as is
the spread of the clustering (0> = 0.2). Example particle size distributions depicted for three example
sections (Figure 9a, 9e, and 9i). The smaller the number of particles in a given area, the more tendency
to a bimodal distribution, although a truly bimodal distribution is never achieved.

with preserved depositional structures. A region of interest
has been selected (Figure 11b) and it has, purely for illus-
trative purposes, been assumed that the lighter shaded areas
contain relatively coarse particles and the darker shaded
areas contain fine particles. This image is used to generate a
2D section of sediment by first filtering using a low-pass
frequency domain filter on the image to accentuate the
contrast in shading, then using this as a spatial PDF in the

same way as the examples above. The point distribution is
also generated in the same way using the CDF. The low-pass
filtered image is shown in Figure 11c along with the
tessellation, in this case representing sectioned particles.
Of course, the ‘particles’ in this case are clearly larger than
they would be in reality. This was intentionally done, by
curtailing the number of generated points to 1000, in order to
illustrate the relative size of particles across the image, since
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Figure 10. Two examples (one per row) of generating a Voronoi tessellation using a random field of
1/frequency spatial (‘pink’) noise. Shown in 2D for simplicity but can just as readily extended to 3D for
application in modeling sediment. (top) Larger exponents on f'create autocorrelated 2D surfaces, therefore
more inhomogeneous spatial point distributions and their Voronoi tessellations. (bottom) Smaller expo-
nents create more homogeneous spatial distributions and tessellations.

smaller size particles would be difficult to see in print.
In reality, however, one would carry on the simulation,
perhaps requesting hundreds of thousands of particles.

3. Model Performance: Similarities With Natural
Granular Material

[36] The modeling approach described here is a general
one for creating populations of particles where structural
adjustments to packing and fabric have not occurred. In
other words, in general the simulated sediments are idealized

and therefore do not contain many of the deterministic
structures that might be in real sediment, such as preferred
fabric, stratification, imbrication, and porosity that differs
with depositional process (for example, greater in grain-flow
deposits than wind ripples). In natural sediments packing is
the emergent property that results from the forces applied to
the particles. The issue of deterministic structures in sedi-
ments is often tied up with scope (defined as the ratio of
scale to resolution) and population statistics (for example,
the ratio of grain size standard deviation to sample volume).
The range of particle sizes present in a sample is to some

Figure 11. (a) Example of a horizontal section through a natural granular material with deterministic
depositional structures (in this case formed by stoss-depositional ripples with spurs (http://walrus.wr.
usgs.gov/seds/bedforms/photo_pages/pic41.html)); (b) a small section of this image to be used as an
assumed random field; (c) a low-pass filtered version of the image overlain by a tessellation based upon
a generated a point distribution. Purely for illustrative purposes, in this case it is assumed that the light
areas of the original image are relatively coarse particles, and the dark areas are relatively fine particles.
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Figure 12. (a) Portion of an image of natural granular material exhibiting clustering due, in part, to the
presence of many small grains within the interstices of large clasts. A red dot shows approximate particle
centers identified by eye; (b) a tessellation based on the spatial point distribution of particle centers shown
in a); and (c) the tessellation overlaying the image, showing their agreement. Like in Figure 3, the tessel-
lation is not a perfect model for the grain outlines. In this case the particle size distributions are not as well
matched as in Figure 3, underestimating the size of the larger cobbles.

extent a function of that sample volume and also sorting
[Church et al., 1987]. For instance, a well-resolved image of
fine well-sorted sand may have physical limits of no more
than a couple of square centimeters (imposed by the macro-
photography) but a sample may adequately capture the var-
iability in the population.

[37] One deterministic structure the model is able to sim-
ulate, using an inhomogeneous model for particle centers, is
preferential packing of particles in pockets. Graton and
Fraser [1935] were among the first to document the pro-
cess of sand deposition such that the particles (on a micro-
scopic level) are not mutually aligned, which on a
macroscopic level produces regions of close packing and
adjacent regions of loose packing. Some authors term these
proximal regions ‘packing flaws’ [e.g., Prince et al., 1995].
Across a granular surface, the collective effect is a greater
‘clustering’ or apparent spatial segregation of particles based
on size/shape. This could be significant if the properties of
interest are the distribution of particle contact points, inter-
locking, seepage/expansion and associated bulk shear resis-
tance properties of the simulated bed. The inhomogeneous
processes are therefore more suitable models of granular
material with such characteristics (Figure 9). An example
physical analog is illustrated by Figure 12 which shows a
situation in which clustering of patches of sand due to the
placement of gravels and cobbles. The approximate particle
centers (identified by dots) have been identified by eye
(Figure 12a). The NVT of these points (Figure 12b) pro-
duces a cell distribution similar to the outlines of particles,
exhibiting the same clustering. A statistically similar result
could be achieved using a CP model by seeding it with the
locations of M parents and tuning it with optimal values of
X and o which control the clustering intensity (Figures 7
and 9) and particle size distribution (Figure 8b), respec-
tively. Overlaying the tessellation on the image (Figure 12c)
shows that the areal extent of the larger cobbles are sys-
tematically under-estimated, providing a clue as to why
bi-modality is difficult to achieve (Figure 9): the coarse mode
might be consistently under-estimated.

[38] The simulated individual particles are qualitatively
(visually) realistic. Much of this is due to the fact that the
granular material always has a distribution of sizes and

shapes, and that the particles are convex and contain a
number of planar faces (approximately 15 is the average for
a 3D particle) separated by straight edges which gives them
a quasi-crystalline appearance. The approaches described
here are able to create populations of particles with size-
distributions which are log-hyperbolic in form (Figure 13)
(these were fitted using the maximume-likelihood estimation
method detailed by Buscombe et al. [2010]). In fact, particle
size-distributions are almost perfectly modeled by a log-
hyperbolic probability density function when the number
of particles measured exceeds 1000, irrespective of particle
packing, shape, and degree of homogeneity in the under-
lying spatial arrangement of particle centers. The log-
hyperbolic is a family of heavy-tailed distributions which
includes the normal and lognormal as limiting cases, and
which has been suggested as the ‘universal form’ of nat-
ural size-distributions [Barndorff-Nielsen, 1977; Bagnold
and Barndorff-Nielsen, 1980]. See Fieller et al. [1992]
for a comprehensive review of the statistical form of par-
ticle size-distributions.

[39] Due to the irregular tessellation, the particles have
convex shapes (i.e., the facets do not inwardly converge)
which is also generally true of naturally occurring clastic
particles. Particle sphericity is defined, where 4, is the sur-
face area of the particle, as [Wadell, 1935]:

13(6v. )23
=T @

4p

[40] The distribution of particle sphericities (Figure 14)
indicates that the particles have a range of regular and quasi-
regular polyhedron shapes such as tetrahedra, octahedra,
icosahedra, and dodecahedra, i.e., a quasi-crystalline struc-
ture. Natural particles tend to have sphericities in the range
0.7 to 1 [Cho et al., 2006]. In the simulations presented here,
mean S is approximately 0.87 for all NVT- and CVT-based
simulations; 0.75-0.78 for Strauss-based simulations; and
0.65—-0.8 for various CP-based simulations.

[41] Perhaps the simplest way to control the porosity of
the simulated granular material is by shrinking or expanding
each vertex of each of the cells by a uniform amount (to a
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Figure 13. The particle size-distributions of granular sections generated using a Halton CVT point den-
sity (symbols), for images containing 2500 (stars), 5000 (crosses), 10000 (diamonds), 20000 (circles), and
40000 (squares) particles, and their log-hyperbolic fits (solid lines). The log-hyperbolic model enjoys a
similar good fit to data from NVT and CVT-Uniform based synthetic sediment beds.

limit to prevent particle overlap). If E are the extreme points
of the vertices (coordinates relative to the origin) of each
particle in each direction, F is the reduction factor, and
the overline represents the mean, each vertex can be reduced
using:

E,=FE+ (1 - F)E. (5)

[42] For example, for a 90% reduction in each particle
volume, £ =0.1 and for a 20% reduction £ = 0.8. In this way
the porosity increases and the particle size decreases, each
by the prescribed amount, but particle shape remains the
same. This is different from particle (morphological) erosion
which would affect particle shape and cause unknown
changes to the particle size-distribution.

[43] The effect of a given F on void ratio (e = V,/V,,) varies
with mean particle size. In order to make the simulations as
realistic as possible to natural sediments, the porosity of the
simulations was controlled, using the F' parameter, in order
to fit observed bi-variation of e and S in experimental data.
The data set chosen was that of Cho et al. [2006], which
consists of 37 types of granular material, including crushed
and natural sands, glass beads and granite powder.

[44] There exists an optimal " which makes the bi-variation
of e and mean S (Figure 15) conform to the empirical rela-
tionship found by Cho et al. [2006] for natural sediments.
Particles generated using the NVT-, CVT- and Halton

tessellations have mean sphericities between 0.87-0.9 which,
according to Cho et al. [2006], means e is approximately 0.85
(V, = 0.54). Those particles generated using cluster point
processes have mean sphericities between 0.65 and 0.8. To
put these values in context, the void ratio for uncompacted
sediments is about 0.85 for well sorted, 0.67 for moderately
sorted, and 0.25 for extremely poorly sorted [Terzaghi et al.,
1996]. Optimal F' depends on the model used and the number
of particles, increasing as a function of the number of parti-
cles for granular material based on inhomogeneous point
distributions, and decreasing for homogeneous point dis-
tributions (Figure 15, right). The correct relationship between
e and S (Figure 15, left) is very sensitive to F, which therefore
constitutes a very important part of the model.

[45] The modification of particle concentration in order to
preserve the sphericity-void ratio relationship is the last part
of the process of simulating granular material used in this
study, which has been summarized in schematic form in
Figure 16. It describes the work-flow from choosing a model
to generate particle centers (section 2.2, encompassing the
decisions made regarding their spatial characteristics, as
illustrated by Figure 4) to creating the basic cell population
using a NVT or CVT Voronoi tessellation (section 2.1). Then
the optional modification is made to pore throat geometries,
as described in section 2.1. Finally, it describes the appli-
cation of an optimal F' to preserve observed variation of
average particle sphericity and void ratio (Figure 15). Note
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Figure 14. Typical shape-distribution of the simulated sediments using an homogeneous packing model.
The shape metric is sphericity, calculated using particle volumes and surface areas. Values between
0.7 and 1 are typical of naturally occurring particles [Cho et al., 2006]. The values of this metric for com-

mon polyhedra are shown for reference.

this procedure does not affect the pore throat geometries,
being a uniform operation on all grain volumes.

4. Discussion

[46] Simple stochastic models have traditionally been used
to generate models of granular material. These often use a
binary random field approach which treats the granular
material as two phases of matter (solid particles and gas- or
fluid-filled ‘voids’) by simulating only the solid phase [e.g.,
Fara and Scheidegger, 1961; Preston and Davis, 1976; Sen,
1984; Koutsourelakis and Deodatis, 2005; Buscombe et al.,
2010]. In such an approach, the particle geometries and
packing characteristics at the scale approaching the indi-
vidual grains are unrealistic even if the bulk properties such
as porosity are adequately simulated. Geometric methods
essentially take the reverse approach by first defining an
elementary shape (usually idealized such as a sphere) with or
without a distribution of sizes, and arrange them into a bed
in such a way which may inadequately replicate the bulk
properties such as packing [e.g., Bernal and Mason, 1960;
Potapov and Campbell, 1998; Latham and Munjiza, 2004].

[47] The approach taken here is different because it uses a
stochastic model to create points (particle centers) about
which geometric objects (particles) are created based on the
random subdivision of space. The location, size and shape of
these particles are defined the instant that subdivision

(tessellation) is made. Thereby the simulated beds have a
structure which is related to the spatial distribution of the
particle centers.

[48] The model has particle size and shape emerge from
initial placement of particle centers, which is at odds with
natural sediment beds, in which the sediment size and shape
are pre-determined. However, the size-, shape- and pore-
space distributions of resulting simulated granular materials
are similar to those of natural well-sorted sediments. The
inherent three-dimensionality of the resulting discrete parti-
cle model eliminates the requirement for a (somewhat
complicated) stereology. In addition, the pre-determination
of a random distribution of particle centers as a stochastic
process with a clearly defined mathematical description, a
lack of which has hampered theoretical studies of densely
packed granular material to date given that the particles
cannot overlap [Moran, 1966; Kellerhals et al., 1975],
allows the model to potentially provide a mathematical basis
to variations in sediment packing and structure.

[49] We have used two types of Voronoi tessellation,
namely the classic or NVT (equation (2)) and the centroidal
or CVT (equation (3)). In addition, a radical (or Laguerre)
Voronoi tessellation could be used, which weights the cell
boundaries according to the relative diameter of the parti-
cles. Such an approach might be useful for simulating par-
ticles with a greater standard deviation in particle size
[Gervois et al., 2002]. All model realizations presented here

13 of 17



F02001

1.1 s, T T T

.
“
.

Void ratio, e
o
o
T

071
""""" Cho et al. (2006)

O NVT-Poisson

061 [J cvT-Uniform .
¢  CVT-Halton
%l% NVT-Strauss
<> CVT-Strauss
D cluster Poisson

0.5 1 ] 1

0.6 0.7 0.8 0.9 1

Sphericity, S

BUSCOMBE AND RUBIN: SIMULATION AND STRUCTURE OF SEDIMENT, 1

F02001

1.2 D % 7

®
%
<*

1.15 >
111 O -
O
1.05F o -
O
s % :
095 5 E

2 ) 3 ' T 4 I @
10 10 10
Number of particles

Figure 15. Left: comparison of particle characteristics compared to natural particles. The dashed line is
the sphericity versus void ratio empirical relationship of Cho et al. [2006] (equation). The symbols repre-
sent the corresponding points forvarious packing models employed in this study, indicating a range in this
parameter space. Right: the particle concentration factor, F, required to achieve the close approximations
seen in the sphericity versus void ratio relationship inthe left panel. F is an increasing function of the num-
ber of particles for inhomogeneous packing structures (asterisks, diamonds, triangles), and a decreasing
function of the number of particles for homogeneous packing structures (circles, squares, stars).

are based on the point distributions whose distributions are
completely determined by their mean and covariance
[Ripley, 1981]. It appears that competing spatial point pro-
cesses such as a Gibbs point distribution [Mase, 1986] do
not produce tessellations whose cells have such heavy
distribution tails [Barndorff-Nielsen, 1989] so these pro-
cesses were not considered further in this study. The obser-
vation that the log-hyperbolic density is universally
applicable to size-distributions of the granular materials sim-
ulated here supports a long-held belief [Barndorff-Nielsen,
1977; Bagnold and Barndorff-Nielsen, 1980]. However, it
might also suggest that the log-hyperbolic form of particle
size-distributions has a geometric basis rather than a dynamic
explanation, as proposed by Bagnold and Barndorff-Nielsen
[1980] and Barndorff-Nielsen and Christiansen [1988], but
which has not been universally accepted by sedimentologists.
Models which generate tessellations with specified size-
distributions invoke more complicated spatial point process
with more rules and attractive forces [Miirmann, 1978] or
use genetic algorithms [Suzudo and Kaburaki, 2009].

However, it would be even more difficult to generate realistic
packings of particles with both pre-defined size-distributions
and pre-defined shape-distributions. In addition, these
methods are very computationally intensive.

[50] Itis beyond the scope of this paper to examine in great
detail all possible permutations of sedimentary variety
allowed by this modeling approach. However, a number of
different approaches have been detailed (Figure 4) which
result in geometries/packings which are sufficiently different
as to affect, for a given number of requested particles, bulk
statistics such as mean particle size, shape, etc. This is
remarkable given the large numbers of particles involved,
plus the fact that the only control on the structure of the bed
is the placement of particle centers. Point-generating sto-
chastic models such the CP and Strauss models described in
section 2.2.1 have a number of free parameters which com-
bine to define the degree of point clustering and other aspects
of granular structure. The more free parameters in such a
rule-following approach, perhaps the greater likelihood of
generating a wider spectrum of packing arrangements.
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Figure 16. Flow diagram summarizing the methods used in this paper for simulating granular matter.
The dashed box represents the part of the algorithm illustrated in more detail in Figure 4.

However, more parameters might also make the mathemati-
cal description of such point distributions (and indeed tes-
sellations based upon them) more complex.

[5s1] The simulated sedimentary structures range from
purely stochastic to weakly deterministic (clustering of
packed particles), thus the modeling approach detailed here
is not able to simulate all types of natural sediment, espe-
cially those with any deterministic structures which are the
result of physical sedimentation processes. Rather, it has
been designed to simulate populations of relatively well-
sorted granular material. The model is only able to simulate
a subset of sediment structures. Indeed, deterministic struc-
tures in the simulated sediments are not possible in this
modeling framework. In order to simulate a particular
deterministic structure in sediment one would need two
models: 1) a model to generate a population of 3D particles
with realistic and known size-distribution and a range
of realistic shapes (a ‘static’ model such as detailed here);
and 2) a deterministic physics-based model which uses the
discrete 3D particles to simulate depositional processes cre-
ating the deterministic structures of interest (a ‘dynamic’
model). Such so-called Discrete Particle Models, which
resolve the contact forces between individual grains as well
as momentum exchanges between individual particles and

the transporting fluid in a Lagrangian framework, are becom-
ing increasingly popular methods by which the dynamics of
granular [e.g., Latham and Munjiza, 2004] and fluid-granular
flows [e.g., Schmeeckle and Nelson, 2003] are understood.

[52] The ability of the model to simulate a specific natu-
rally occurring sediment would be influenced by errors in
both the realism of the population of particles generated by
the ‘static’ model, and the adequacy of the physics encap-
sulated in the ‘dynamic’ model. Therefore, a reasonable
evaluation of the performance of the proposed modeling
approach must be limited to the former, i.e., comparing sta-
tistical measures of simulated and natural populations of
particles. We will therefore limit our contribution to simula-
tion of a given sediment through the description of generating
simulated particles with a packing defined according to some
assumed random field given in section 2.2.2 (Figure 11). In
the present section the general form of simulated particle
size and shape distributions are compared to those found in
nature. A further step in the simulation process is described
whereby the bi-variation of particle shape (sphericity) and
porosity found in natural unconsolidated clastic particles is
preserved.

[53] In this modeling approach we see no theoretical
constraints with increased particle size variability with scale,
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thereby simulating a square-meter image of gravels and
sands equally well as a square-kilometer image of boulders,
gravels and sands, and so on. At large scales, computational
issues would arise with simulating very large volumes. This,
and the issues of deterministic structures, have dictated
that the model has been designed to simulate relatively
small (up to millions of particles) volumes of relatively well-
sorted granular material.

[54] In the second of this pair of papers (part 2) this
modeling approach is used to generate many realizations of
granular materials to develop and test automated methods
for quantifying particle-size statistics from images of sur-
faces of natural sediment. The model is used to test methods
designed to estimate the apparent grain sizes of the surface
(granulometry), and also to infer vertical distribution of
grain sizes within planar samples through the surface layers
of the sediment (coined unfolding by Ripley [1981]) in order
to quantify the likely mismatch between the apparent and
actual particle size of the surface population of particles.

[s5s] While our primary aim is to simulate collections of
mineralogical particles (sedimentary clasts), the modeling
approach described here may provide an alternative model
for non-mineralogical granular material such as foam,
aggregations of biological cells and seeds, chemical crystals,
as well as non-natural granular material such as manufac-
tured products (e.g., bearings, pharmaceuticals, etc). Such
materials will have very different deterministic structures.

[s6] In sedimentology, the modeling approach detailed
here, in the field of computed tomography for quantitative
characterization of natural sediments [e.g., Holler and
Kaogler, 1990] might aid the interpretation and representa-
tion in idealized forms of well-sorted sediments for further
use in theoretical and simulation-based studies. In addition,
granular simulations such as these may complement recent
advances made in the direct measurement of the packing
properties of sand [e.g., Louge et al., 2010].

5. Conclusion

[57] Models of granular material which do not use regular
geometrical shapes (such as spheres) for the elementary
particle are more realistic representations of a variety of
naturally occurring granular material. However, traditionally
such material has been difficult to simulate through com-
putationally simple means, as well as difficult to ascribe a
mathematical basis to variations in sediment packing and
structure. Here, a new framework for the simulation of nat-
ural granular material has been explored based on the
principle of Voronoi tessellation. Variations in particle size
and packing can be achieved simply by varying the spatial
point distribution about which the Voronoi cells (particles)
are constructed. Such point distributions, and therefore the
simulated sediment, have a well known mathematical
basis if generated using a spatial point-generating stochastic
model.

[s8] This approach is both theoretically and practically
simple, and creates populations of qualitatively realistic parti-
cles with size and shape distributions (specifically, lognormal
and log-hyperbolic) conforming quantitatively to those found
in a great variety of natural sediments. In addition, the
simulated materials mimic particle sphericities and porosi-
ties within known values. However, the three-dimensional
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packings of these particles simulate rather idealized sedi-
ments which lack the deterministic structures common in
natural sediments. One would therefore require a dynamic
physics-based discrete particle model to replicate the more
deterministic sedimentary structures found in nature. The
primary advantages of using the methods detailed here for
generating the population of particles, compared to tradi-
tional approaches, would be the realism of the particles and
the computational simplicity. As such, the modeling approach
detailed here might readily replace spheres and other regular
shapes, with limited or no distribution of particle size, in
forming the basis of direct numerical simulations of fluid-
granular flows or indeed pore water flows through the
material. The structure and images of the surface layers of
simulated granular materials have been used to evaluate new
automated methods for measurement of particle size and
structure, which is the subject of the companion paper.
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