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Abstract—The probability distribution of far-field tsunami

amplitudes is explained in relation to the distribution of seismic

moment at subduction zones. Tsunami amplitude distributions at

tide gauge stations follow a similar functional form, well described

by a tapered Pareto distribution that is parameterized by a power-

law exponent and a corner amplitude. Distribution parameters are

first established for eight tide gauge stations in the Pacific, using

maximum likelihood estimation. A procedure is then developed to

reconstruct the tsunami amplitude distribution that consists of four

steps: (1) define the distribution of seismic moment at subduction

zones; (2) establish a source-station scaling relation from regres-

sion analysis; (3) transform the seismic moment distribution to a

tsunami amplitude distribution for each subduction zone; and (4)

mix the transformed distribution for all subduction zones to an

aggregate tsunami amplitude distribution specific to the tide gauge

station. The tsunami amplitude distribution is adequately recon-

structed for four tide gauge stations using globally constant seismic

moment distribution parameters established in previous studies. In

comparisons to empirical tsunami amplitude distributions from

maximum likelihood estimation, the reconstructed distributions

consistently exhibit higher corner amplitude values, implying that

in most cases, the empirical catalogs are too short to include the

largest amplitudes. Because the reconstructed distribution is based

on a catalog of earthquakes that is much larger than the tsunami

catalog, it is less susceptible to the effects of record-breaking

events and more indicative of the actual distribution of tsunami

amplitudes.

Key words: Tsunamis, probability distribution, seismic

moment, tsunami amplitude, tide gauge.

1. Introduction

The probability distribution of tsunami sizes at a

particular location on the coast has been investigated

since the late 1960s to establish tsunami hazard

curves (see summary in GEIST and PARSONS 2006).

Most of the early relationships were based on tsunami

intensity i ¼ log2
ffiffiffiffiffiffiffiffiffiffiffi

2Ravg

p

that averages tsunami

amplitudes or runup over a length of coastline (Ravg).

More recently, BURROUGHS and TEBBENS (2005)

established a power-law relation between the rate of

occurrence and maximum-per-event amplitude at tide

gauge stations. They indicate that this relation can be

used to probabilistically forecast the number and size

of future events. The advantage of a purely empirical

approach in developing tsunami hazard curves is the

avoidance of numerical model-based assumptions

and uncertainties, since tsunami amplitudes are

directly read from instrumental tide gauge records

after detiding. However, undersampling and censor-

ing are major issues facing the estimation of

empirical hazard curves (GEIST and PARSONS 2014;

GEIST et al. 2009). Furthermore, it can be difficult to

relate the amplitude distribution at tide gauge stations

to the broader distribution of runup along the coast

adjacent to the tide gauge station.

Although there are obvious hazard assessment

implications, the primary objective of this study is to

better understand the physical origin of apparent

power-law scaling for tsunami amplitudes. It has

been known for a long time (ISHIMOTO and IIDA 1939)

that earthquake seismic moment (m) over a broad

region follows a power-law distribution over many

orders of magnitude. The frequency-magnitude form

of the distribution is known as the Gutenberg–Richter

relationship (1944), where moment magnitude M is

typically referred to in the recent literature:

M ¼ 2

3
log10 m � 9:05ð Þ: ð1Þ

The origin of a power-law distribution of seismic

moment has been ascribed, for example, to a self-

organized critical process of stress transfer (e.g.,

OLAMI et al. 1992). For a broad region, magnitude-

frequency resolution is such that a mixture of
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characteristic faults (e.g., LÓPEZ-RUIZ et al. 2004;

WESNOUSKY 1994) or Gutenberg–Richter distributed

faults with different maximum magnitude cut-offs

(e.g., KAGAN 2002a, b) can satisfy the linear power-

law trend. Conversely, a finite-sample of power-law

distributed earthquake sizes can mimic a character-

istic model of earthquake occurrence (PARSONS et al.

2012; PARSONS and GEIST 2009).

The power-law distribution of seismic moment is

likely the primary cause of how tsunami amplitudes

are distributed. However, because tsunamis observed

at a far-field station are the aggregations of sources

from many different fault zones (Fig. 1a), each with a

different corresponding attenuation of amplitude with

distance and site response (i.e., propagation charac-

teristics near the recording station), it is not clear how

they combine to form the observed empirical distri-

bution. It is also unclear whether the tail of the

distribution is related to a physical effect at the source

or of the tsunami itself, or is related to undersampling

(BURROUGHS and TEBBENS 2001; GEIST and PARSONS

2014).

In this paper, we attempt to empirically recon-

struct the tsunami amplitude distribution at far-field

tide gauge stations, starting with the distribution of

seismic moment along subduction zones. The recon-

struction relies on an estimate of how tsunami

amplitude scales with seismic moment for a particu-

lar subduction zone and tide gauge station pair. To

avoid any number of events recorded since their

installation, this m * A scaling relation based on

regression analysis of historic catalog data. The

seismic moment distribution can then be transformed

to a tsunami amplitude distribution from this scaling

relation and the transformed distributions from each

subduction zone can be aggregated together using a

mixture distribution, resulting in the reconstructed

distribution for a given tide gauge station.

Below, we start by describing both the tsunami

and earthquake data used in the reconstruction. We

then perform maximum likelihood estimation (MLE)

of parameters that describe a power-law distribution

with an exponential taper, termed the tapered Pareto

distribution. This distribution spans the basic form of

most empirical distributions observed at tide gauge

stations. The reconstruction method is then detailed,

with results shown for four tide gauge stations in

comparison to the empirical and MLE tapered Pareto

distributions. These results are then discussed with

regard to the sensitivity of the reconstruction method

to a record-breaking event.

2. Data

The data used for this study are maximum-per-

event amplitudes recorded at tide gauge stations and

cataloged in the National Centers for Environmental

Information Global Historical Tsunami Database.

Runup data are not used to avoid mixed types and

locations of measurement. Only far-field events with

sources greater than 1000 km from the station are

selected because at these distances, tsunami ampli-

tude scales approximately with seismic moment. In

the near-field, conversely, tsunami amplitudes are

affected by multiple other source parameters, such as

slip variability, where the individual scaling relations
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Figure 1
a Maximum tsunami amplitude (A in meters) per event at the Hilo

tide gauge station from 1906 to 2015. Key to source zones:; AA

Alaska-Aleutian, SA South America, JP Japan, KK Kuril-Kam-

chatka, MX Mexico and Central America, SV Solomon Islands

and Vanuatu, TK Tonga-Kermadec. b Empirical survivor function

(P) of the data[0.1 m shown in (a)
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are more uncertain. In addition, near-field records of

tsunamis are often partial and clipped and the stations

themselves are often damaged. Even in examining

far-field events we cannot completely avoid problems

with the tide gauge records. For example, data gaps

occur after the second peak arrival in the record of the

1960 Chile tsunami at Hilo and Nawiliwili. The

selection criterion for which tide gauge stations are

analyzed is based primarily on the number of events

recorded since their installation, and a wide geo-

graphic distribution in the north Pacific. A MLE of

distribution parameters is performed on data from

eight stations: three stations in Hawaii (Hilo, Kahului,

and Nawiliwili), two stations in Japan (Kushimoto

and Mera), and three stations on the mainland of the

U.S. (Crescent City, San Francisco, and San Diego).

Reconstruction of the amplitude distribution is per-

formed for four of these stations that have sufficient

data: Hilo, Kahului, Kushimoto, and Crescent City.

The raw data from the Hilo tide gauge station are

shown in Fig. 1. Most tide gauge stations have a

preponderance of 0.1 m readings that are ‘‘default’’

values for small tsunamis although sub-decimeter

readings become more common after about 1960

(GEIST and PARSONS 2011). There may be effects on

the recorded amplitude related to the response of tide

gauges to tsunamis that change over the time period

of historical observations (SATAKE et al. 1988).

Empirical probability distributions are fitted and

plotted starting at amplitude thresholds nominally

greater than 0.1 m. The regressions used in the

reconstruction, however, make use of the entire sta-

tion catalog shown, for example, in Fig. 1a. The

probability distribution typically displayed for earth-

quakes and tsunamis is the survivor function (P), i.e.,

the complement to the cumulative distribution func-

tion (Fig. 1b).

The earthquake magnitudes associated with

events listed in the tsunami database are problematic,

owing to different magnitude scales used (GEIST

2014). In this study, events listed in the tsunami

database from 1900 through 1999 are cross-refer-

enced to the Centennial catalog (ENGDAHL and

VILLASEÑOR 2002), corrected to a common reference

magnitude scale that provides more accurate and

consistent magnitude estimates for the analysis. The

Centennial catalog is complete to M = 7.0 since

1900 although the precision of magnitudes in the

historical period (1900–1963) is roughly 0.25–0.5

magnitude units (ENGDAHL and VILLASEÑOR 2002).

Earthquake magnitudes for tsunami events occurring

from 2000 to 2015 were cross-referenced to the

Advanced National Seismic System (ANSS) earth-

quake catalog. In performing the reconstruction

analysis, a clear outlier event with far-field tsunami

amplitude much greater than the earthquake magni-

tude listed in the Centennial catalog is the September

7, 1918 Kuril event. The primary magnitude listed for

this event is 7.6 with a deep focal depth of 242.4 km.

However, GELLER and KANAMORI (1977) indicate a

magnitude of 8.25, which is the magnitude we use in

this study, and inverse tsunami travel time analysis

indicates that the event occurred in the forearc

(HATORI 1971).

3. Maximum Likelihood Estimate (MLE)

of Distribution Parameters

The probability distribution that we use to model

tsunami data is the tapered Pareto (or Kagan) distri-

bution (KAGAN 2002a; VERE-JONES et al. 2001). This

distribution was previously used to model several

different types of natural hazards, including earth-

quakes, floods, tsunamis, and meteotsunamis (GEIST

and PARSONS 2014; GEIST et al. 2014). The form of the

distribution is the Pareto distribution modified by an

exponential tail:

P Að Þ ¼ At

A

� �b

exp
At � A

Ac

� �

; forAt �A ð2Þ

where b is the power-law exponent, Ac is the corner

amplitude, and At is the threshold amplitude for tsu-

nami distributions. End-members of this distribution

include the pure Pareto distribution (Ac ? ?) and

the exponential distribution (b ? 0). Theoretically,

in the manner of VERE-JONES et al. (2001), the power-

law component relates to a scale-invariant physical

process whereas the exponential component repre-

sents a physical limitation that intervenes to taper the

power-law component at the largest sizes. In the case

of tsunamis, the power-law component is likely

related to the power-law form of the seismic moment

distribution that spans many orders of magnitude.
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The origin of the exponential component, however, is

less clear for tsunamis: it can either be directly related

to size limitations for earthquakes or to energy-dis-

sipating processes of the tsunami itself, particularly in

shallow-water environments near tide gauge stations.

4. Method

A two-parameter maximum likelihood method is

described by KAGAN (2002a) to jointly estimate b and

Ac. The likelihood function associated with the

tapered Pareto distribution is given by

‘ ¼ nb lnAt þ
1

Ac

nAt �
X

n

i¼1

Ai

 !

� b
X

n

i¼1

lnAi

þ
X

n

i¼1

ln
b
Ai

þ 1

Ac

� �

: ð3Þ

where n is the number of samples. Because the

likelihood Eq. (3) includes 1/Ac terms, the parameters

estimation is performed on b and g � 1=Ac. Prior to

estimating distribution parameters by maximizing the

above likelihood equation, the appropriate threshold

amplitude At needs to be determined for each station

catalog. The method used in this study is described by

CLAUSET et al. (2009), where the nonparametric

Kolmogorov–Smirnov (K–S) statistic is used as a

goodness of fit measure. Successive values of At are

input to maximum likelihood estimation. The value

of At that yields the lowest K–S statistic is the one

used for the final maximum likelihood estimate

(MLE) for that station.

Figure 2 shows likelihood contours for the Hilo

station and the MLE (see GEIST and PARSONS 2014 for

optimization method used in determining the maxi-

mum of the likelihood equation). Confidence

intervals in the parameter estimates are given by the

profile likelihood (PAWITAN 2001), holding one

parameter at the MLE (light lines in Fig. 2).

Hypothesis testing can also be performed on the

profile likelihood. However, the confidence contours

(95 and 99 % highlighted in Fig. 2) are a more con-

servative test of hypotheses when there is correlation

between the two parameters. This is evident when the

likelihood contour ellipses are sloped, for example in

Fig. 2 where estimates for the two distribution

parameters are negatively correlated. To test the null

hypothesis that H0: g = 0 (i.e., a pure Pareto distri-

bution), the profile likelihood indicates that H0 can be

rejected at the 95 % confidence level. However, the

95 % confidence contour intersects the g = 0 axis

away from bb, indicating the H0 cannot be rejected. In

both cases, H0: b = 0 corresponding to the expo-

nential distribution can be rejected.

5. Results

The above method has been applied to earth-

quakes in a number of tectonic environments. BIRD

and KAGAN (2004) perform a MLE of seismic

moment distribution parameters along global sub-

duction zone boundaries (as well as other global

tectonic boundaries) using the global centroid

moment tensor (gCMT) catalog from 1977 to 2002.

They also perform the same analysis on a merged

catalog that includes the EKSTRÖM and NETTLES (1997)

catalog for the year 1976 and the PACHECO and SYKES

catalog (1992) for 1900–1975 and apply a tectonic

constraint for moment rate (see also KAGAN 2002b).

The MLE’s made by BIRD and KAGAN (2004) using
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Figure 2
Likelihood map for the joint estimation of b and g = 1/Ac at the

Hilo station. MLE indicated by plus. White and black contours

indicate 95 and 99 % confidence regions for estimate, respectively
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the merged catalog and moment conservation yield

b = 0.64 and a corner moment magnitude of

Mc = 9.58 for all subduction zones. These and other

estimates of the seismic moment distribution

parameters will be used in reconstructing the tsunami

amplitude distribution described in the next section.

The MLE fit of the tapered Pareto distribution to

far-field tsunami amplitudes is shown in Fig. 3 for the

Hilo

Nawiliwili

Mera

San Francisco San Diego

Kahului

Kushimoto

Crescent City

(exponential)

Figure 3
Results of maximum likelihood estimation (MLE) for far-field tsunamis recorded at eight stations. Red empirical distribution. Blue tapered

Pareto distribution
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eight tide gauge stations in the north Pacific.

Parameter estimates and results of hypothesis testing

are listed in Table 1. Among the eight stations, the

value of the corner amplitude Ac varies significantly,

depending on how efficiently tsunamis are transmit-

ted from the source to the tide gauge station. Source

effects include variations in both propagation dis-

tance and the source-station azimuth relative to the

radiation pattern—tsunami amplitude is typically

greatest along an azimuth perpendicular to strike

(BEN-MENAHEM and ROSENMAN 1972), modified by the

refraction and scattering during propagation. Site

effects include refractive focusing and defocusing,

shelf and harbor resonance, and response related to

the excitation of edge waves (e.g., RABINOVICH and

THOMSON 2007). The Hawaiian stations of Hilo and

Kahului and the U.S. mainland station of Crescent

City have the highest values of Ac. The corner

amplitude maybe even higher, given that data gaps of

the 1960 tsunami at Hilo and Kahului and the

exclusion of the 1964 tsunami at Crescent City

(partial record) likely underestimate the largest

amplitude occurring at these stations in the historical

period. In contrast to the variation in Ac, the estimates

of b among the eight stations are similar. For stations

that have a narrow range between At and Ac (e.g., San

Francisco and San Diego), the estimation for b
becomes less constrained. In fact, for San Diego it

appears that the distribution is dominated by the

exponential component of the tapered Pareto function

(MLE b = 0).

For the Hawaii stations (Hilo and Kahului), there

are significant fluctuations of the empirical distribu-

tion around the tapered Pareto distribution (red and

blue lines, respectively, in Fig. 3). It is not immedi-

ately clear whether a particular subduction zone is

causing these fluctuations, or if there is a temporal

signature to the distribution. In successively remov-

ing events from individual subduction zones, we

noticed no significant effect on the shape of the

empirical distribution. However, in examining the

distribution before and after 1960, there is a

remarkable change (Fig. 4). The greater number of

Table 1

Results from maximum likelihood estimation of tapered Pareto distribution at eight stations

Station At (m) n bb cAc (m) Profile likelihood 2-Parameter likelihood

Reject pure Pareto? Reject exponential? Reject pure Pareto? Reject exponential?

Hilo 0.18 37 0.69 1.4 Yes Yes No Yes

Kahului 0.14 42 0.86 3.4 No Yes No Yes

Nawiliwili 0.10 18 0.47 0.54 Yes Yes No No

Kushimoto 0.14 30 0.64 0.45 Yes Yes No No

Mera 0.16 14 0.55 0.40 Yes No No No

Crescent City 0.14 27 0.59 1.1 Yes Yes No No

San Francisco 0.10 14 0.24 0.31 Yes No No No

San Diego 0.14 11 0 0.21 Yes No No No
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Figure 4
Empirical amplitude distribution prior to and after 1960
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M9 earthquakes B1960 are associated with a high

number of amplitude readings over 1 m (Fig. 4a).

After 1960, the distribution conforms more to a

power-law relation (Fig. 4b). It is also possible that

small amplitudes are censored in the early parts of the

station catalogs. Overall, however, the fluctuations

appear to be tied to the apparent clustering of large

magnitude earthquakes throughout history (PARSONS

and GEIST 2012, 2014).

To determine whether this is simply a conse-

quence of finite sampling, 100 synthetic distributions

with a sample size equal to the length of the Hilo

station catalog are calculated (Fig. 5). The sampling

method is described by KAGAN (2002a) and GEIST and

PARSONS (2014). The observed distribution falls

within the trumpet-shaped envelope of the synthetic

distributions (MAIN et al. 2011) although the fluctu-

ations of the empirical record at one point reach the

95th percentile of the envelope defined by the syn-

thetics. In summary, the empirical distribution is

temporally unstable, particularly with regard to the

corner amplitude parameter (GEIST and PARSONS

2014). Because the reconstructed distributions

described below are based on a larger earthquake

dataset, they are not as affected by temporal varia-

tions in large earthquake occurrence.

6. Reconstruction from Earthquake Distributions

To better understand the origin of how tsunami

amplitudes are distributed, we reconstruct the

observed distributions, starting from seismic moment

distributions defined at subduction zones. Moment

distributions from each subduction zone can be

transformed to tsunami amplitude distributions, using

scaling relations derived from regression analysis.

Mixing the tsunami distributions from each subduc-

tion zone produces an aggregate distribution that can

be compared with the empirical and fitted tapered

Pareto distributions. Details of the method are

described below.

7. Method

Reconstruction of the tsunami distribution at a

tide gauge station consists of four steps: (1) specifi-

cation of the seismic moment distribution for each

subduction zone, (2) regression analysis relating

maximum-per-event tsunami amplitude at a station to

moment magnitude at subduction zones (i.e., for a

source-station pair), (3) transformation of the seismic

moment distribution to a tsunami distribution based

on the regression analysis for each source-station

pair, and (4) mixing the tsunami distributions for all

significant source-station pairs to obtain a single,

aggregate distribution at a tide gauge station.

For Step 1 of the reconstruction, the distribution

of seismic moment for each subduction zone is taken

from previous studies that use the MLE method

described above. Although some studies have esti-

mated distribution parameters based on difference

zonation schemes (KAGAN 1997, 1999), these studies

and BIRD and KAGAN (2004) argue that all subduction

zones have similar values of b = 0.63. BIRD and

KAGAN (2004) estimate a global corner moment

magnitude for subduction zone earthquakes of

Mc = 9.58 (mc = 2.9 9 1023 Nm), based on a

merged twentieth century earthquake catalog and

tectonic moment conservation. In the BIRD and

KAGAN (2004) study, a restrictive definition of sub-

duction zone earthquakes is used based on distance

and focal mechanism criteria. KAGAN et al. (2010)

indicate a lower value of Mc = 8.75 using less

restrictive earthquake selection criteria at subduction

zones; the region where these earthquakes occur is

termed ‘‘trench zones’’ as distinct from the focal

mechanism specific subduction zones defined by BIRD

and KAGAN (2004). KAGAN (2010) indicates that, in

A (m)

P
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Figure 5
One hundred synthetic distributions (blue lines) sampled from

MLE of the tapered Pareto distribution (green line). Empirical

distribution shown by red line
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general, b may actually be close to 0.5, owing to the

combined effect of a number of factors: systematic

and random errors in measuring seismic moment (m),

clustering of earthquakes, earthquake complexity,

and centroid depth distribution. We test the effect that

different values of both Mc and b have on the final

result.

Several previous studies have examined scaling

between seismic moment and tsunami amplitude at

tide gauge stations (ABE 1979, 1989; COMER 1980;

GEIST 2012; OKAL 1988; PELAYO and WIENS 1992)

(Step 2 of the reconstruction). The observations span

several orders of magnitude, confounding regression

between these two variables. Under ordinary least

squares (OLS) linear regression, there is a dispro-

portionate relative error among samples, biasing the

fit preferentially toward large values (SORNETTE

2009). An alternative is to scale the logarithm of

tsunami amplitudes with respect to moment magni-

tude (Eq. 1) as performed by, for example, PELAYO

and WIENS (1992) and GEIST (2012). However, log-

linear regression using an OLS estimator can also

have pitfalls, including an assumption that the

residuals of the log-amplitude are uniform and nor-

mally distributed. In addition, differences among

many small, non-zero values expected from a power-

law distributed random variable will be accentuated

when the logarithm is applied. Instead, we use Pois-

son regression with the Huber–White sandwich

estimator (HUBER 1967; WHITE 1980) that accounts

for heteroskedasticity in the data and that relaxes the

Poisson assumption of variance being equal to the

mean. Although Poisson regression is commonly

applied to count data (e.g., GEIST and PARSONS 2011),

it can also be applied to continuous data and solves

for coefficients a1 and a2 in the equation below:

Aj ¼ ea1þa2Mjþej ; ð4Þ

where j is an index over sample space and ej is the

error term. Hence, amplitude (A), rather than log-

amplitude is regressed against moment magnitude

(M). Shown in Fig. 6 is a comparison of the residuals

for the South America-Hilo source-station pair.

Although, the differences are minor, Poisson regres-

sion with the Huber–White estimator is a more robust

method to determine the scaling relation between

earthquake size and tsunami amplitude.

The exclusion criterion that we use to determine

whether the regression is significant for a particular

source-station pair is the p value from the Wald test

under the null hypothesis that the regression coeffi-

cients are zero. If the coefficients are not significant

at the 95 % confidence level, that source-station pair

is not used further in the reconstruction.

For demonstration purposes, we show the results

of the log-linear OLS regression analysis for the

South America-Hilo subduction zone pair in Fig. 7.

For comparison, the results of the Poisson regression

are shown by the red line, which is not as influenced

by small non-zero values as the OLS log-linear

regression. As a test, the 95 % prediction interval for
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Figure 6
Comparison of residuals for the South America-Hilo source-station

pair using two different regression methods
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Figure 7
Results from log-linear regression (black line). 95 % prediction

interval shown by shaded region. Regression computed without the

2015 event (orange) for this figure. Poisson regression line shown

in red
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an individual forecast (shaded region), as distinct

from the confidence interval of the mean, is calcu-

lated without the 2015 Chile event (orange dot).

Although the 2015 event generated a larger tsunami

than average, it falls within the wide prediction

interval. In general, the uncertainty represented by

the shaded region includes uncertainty of source

parameters other than seismic moment that affect

tsunami generation (GEIST 1999).

Step 3 of the reconstruction involves transforming

the seismic moment distribution to a tsunami ampli-

tude distribution. In general, for a probability density

function p(x) defined on the interval a B X B b and a

transformation function y(x), the transformed density

function q(y) is given by (KEMPTHORNE and FOLKS

1971)

q yð Þ ¼ p x yð Þ½ � dx

dy

�

�

�

�

�

�

�

�

; y að Þ� Y � y bð Þ; ð5Þ

where x(y) is the inverse of y(x). The above equation

is valid only if both x(y) and y(x) are single valued

and if either dx

dy
� 0 or dx

dy
� 0. Thus, y(x) must either

be monotonically increasing or decreasing. In this

study, the transformation takes the functional form of

A mð Þ ¼ c1mc2 ; ð6Þ

where the constants c1 and c2 are related to the

regression coefficients a1 and a2 (Eq. 4), taking into

account the definition of moment magnitude (Eq. 1).

The value of mt used in the transformation is deter-

mined from the value of At and the scaling equation

for each source-station pair.

Transformed distributions are shown in Fig. 8 for

four tide gauge stations. For this example, a globally

uniform seismic moment distribution with parameters

b = 0.5 and Mc = 9.58 is transformed according to

Eq. 6, using regression coefficients specific to each

source-station pair. The maximum seismic moment

may be limited by the length of a subduction zone

(MCCAFFREY 2008). In this study, however, all of the

subduction zones that produce significant regressions

are long enough to support an earthquake greater than

the corner moment (mc). Because the same moment

distribution is used for each subduction zone, differ-

ences in the tsunami amplitude distributions relate to

how efficiently tsunamis are transmitted from each

subduction zones to the station, owing to propagation

and site response effects. For example, tsunami

amplitudes for a given seismic moment are signifi-

cantly higher at the Kahului station than the nearby

Hilo station for each subduction zone, except for the

Japan and Tonga-Kermadec subduction zones.

Finally, in Step 4 of the reconstruction, the

transformed tsunami distributions from all significant

source-station pairs are mixed to form the aggregate

tsunami distribution. In general, a mixture density

distribution is given by the finite, weighted sum of

density functions p(x), most often of the same dis-

tribution or distribution family:

m xð Þ ¼
X

n

i¼1

wipi xð Þ;
X

n

i¼1

wi ¼ 1: ð7Þ

In this study, weights (wi) in the mixture model

are assigned according to the relative rate at which

each subduction zone produces tsunamis at the sta-

tion. The weights are calculated by dividing the

number of subduction zone earthquakes generating

tsunamis greater than the threshold amplitude At at a

station by the total number events used in the

reconstruction. In general, the mixed distribution will

have subtle variations, depending on the variability of

the distribution parameters of the source-station pairs.

Often, however, the mixed distribution can be well

approximated by the tapered Pareto distribution.

8. Results

Different combinations of seismic distribution

parameters zones are tested for the reconstruction. In

this study, these parameters are prescribed to be the

same for all subduction zones, but the method can

accommodate regional variations in seismic moment

distribution parameters. As for the source-station

amplitude distributions shown in Fig. 8, an

Mc = 9.58 estimate from BIRD and KAGAN (2004) and

a b = 0.5 from KAGAN (2010) is first tested. The

resulting reconstructed amplitude distribution is

shown for the Hilo station in Fig. 9a. For comparison,

using the global value of b = 0.63 from BIRD and

KAGAN (2004) results in a corresponding increase in

the equivalent power-law exponent of the amplitude

distribution (Fig. 9b). The effect of a lower corner

Reconstruction of Far-Field Tsunami Amplitude Distributions From Earthquake Sources



moment magnitude Mc = 8.75 (KAGAN et al. 2010),

using a broader selection of earthquakes at ‘‘trench

zones’’ (KAGAN and JACKSON 2013), is shown in

Fig. 9c. There is a corresponding lowering of the

equivalent corner amplitude of the tsunami distribu-

tion. Using both b = 0.5 and Mc = 8.75 (Fig. 9d)

results in a tsunami distribution that can be rejected

with 95 % confidence, according to the K–S p value

(Fig. 9d).

Results of the reconstruction procedure are shown

for four tide gauge stations are shown in Fig. 10,

using the optimal combination of moment distribu-

tion parameters shown in Fig. 9a: Mc = 9.58 and

b = 0.5. In comparison to the MLE distributions

(Table 1), the effective power-law exponent and

corner amplitude is higher for the reconstructed dis-

tributions, except for the Kahului station where b is

approximately the same (Table 2). The reconstructed

distributions, therefore, indicate higher probabilities

for large amplitudes compared to the MLE

distributions.

For the Hilo station (Fig. 10a), the source regions

that result in significant regression results are the

Alaska-Aleutian, South America, Japan, and Kuril-

Kamchatka subduction zones (corresponding ampli-

tude distributions shown in Fig. 8). The Kahului

station is 200 km away from the Hilo station and

provides a good comparison to determine the effect

of site response on the reconstructed distribution.

Overall, most subduction zones are more efficient in

generating tsunamis at Kahului, resulting in a higher

corner amplitude than for Hilo. Interestingly, the

regression with respect to the Tonga-Kermadec sub-

duction zone is significant for the Kahului station,

P
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Figure 8
Transformed distributions of tsunami amplitudes for four stations and subduction zones where regression analysis is significant (solid

distributions). Subduction zones: SA South America, AA Alaska-Aleutian; JP Japan, KK Kuril-Kamchatka, TK Tonga-Kermadec. Note that

TK-Hilo regression (dashed distribution) is not significant at 95 % confidence, but included for demonstration purposes (see text)

E. L. Geist, T. Parsons Pure Appl. Geophys.



whereas it is not for the Hilo station (dashed line in

Fig. 8). If we add the Tonga-Kermadec sources to the

Hilo reconstruction (relaxing our criteria for accept-

ing source-station regressions to, for example, 80 %

confidence), there is only a marginal change to the

reconstructed distribution. This is because regressions

below the 95 % confidence level often have fewer

events relative to the other source zones, thus low-

ering the weight (wi) for these source regions in the

mixing stage (Eq. 7).

Two stations on the margin of the Pacific Basin

are also analyzed: Kushimoto and Crescent City.

Overall, far-field tsunamis are more efficiently

transmitted to the Crescent City station than the

Kushimoto station. The heavier tail of the tsunami

amplitude distribution associated with Crescent City

is likely caused by the regional (site) response near

the station (HORRILLO et al. 2008), rather than source

effects. It should be reiterated, however, only far-field

tsunamis are analyzed; the distribution for the

Kushimoto station would look significantly different

if near-field sources were included, whereas the

Crescent City distribution would look similar to what

is displayed in Fig. 10b because there are compara-

tively few local tsunami sources that have been

recorded at Crescent City.

9. Discussion

The reconstructed tsunami amplitude distributions

presented here are more robust than MLE estimates

using just observations from the tsunami catalog

because the reconstructions are based on a larger

earthquake database. GEIST and PARSONS (2014) show

that the MLE of corner amplitude is unstable and can

β=0.63, Mc=9.47
K-S: 0.077

β=0.63, Mc=8.75
K-S: 0.032
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Figure 9
Effect of different combinations of source distribution parameters on reconstructed tsunami amplitude distribution at the Hilo station. K–S

Kolmogorov–Smirnov p value

Reconstruction of Far-Field Tsunami Amplitude Distributions From Earthquake Sources



change significantly with one record-breaking event.

In contrast, there is a much smaller effect of a record-

breaking event on the reconstructed distributions

presented here. Although the tail of the global seismic

moment distribution may also be poorly constrained

based only on the gCMT catalog (ZÖLLER 2013),

introducing other constraints such as moment con-

servation linked to plate boundary deformation rates

results in a more stable estimate of the global seismic

moment distribution (BIRD and KAGAN 2004; KAGAN

and JACKSON 2013). In terms of the regression, there

can be a slight change in the estimated scaling caused

0.2 0.5 1 2 5

0.05

0.10

0.50

1

0.5 1 5 10

0.05

0.10

0.50

1

0.2 0.5 1

0.05

0.10

0.50

1

KahuluiHilo

Crescent CityKushimoto

0.2 0.5 1 2 5

0.05

0.10

0.50

1

A (m)

P

A (m)

P

A (m)

P

A (m)

P

Figure 10
Reconstructed distributions (blue dashed lines) and tapered Pareto distribution best fit to reconstruction (blue solid lines) for four stations.

Empirical and MLE distributions shown by green and orange lines, respectively. Note differences in amplitude scales

Table 2

Results of reconstruction method for four tide gauge stations

Station Subduction zones with Effective Effective

Significant regressions bb cAc (m)

Hilo AA, SA, JP, KK 1.25 6.0

Kahului AA, SA, JP, KK, TK 0.80 21.

Kushimoto AA, SA, KK 1.05 0.81

Crescent City AA, SA, JP 0.81 3.4

AA Alaska-Aleutian, SA South America, JP Japan, KK Kuril-Kamchatka, TK Tonga-Kermadec

E. L. Geist, T. Parsons Pure Appl. Geophys.



by a record-breaking event. For example, Fig. 11

shows the log-linear regression fit for the South

America-Hilo source-station pair with and without the

M = 9.6 1960 Chile earthquakes. This event, along

with the M = 9.2 1964 Alaska earthquake, are known

to have generated deficient tsunamis relative to their

moment magnitude (OKAL 1988) although the maxi-

mum amplitude of the 1960 tsunami may not have

been accurately recorded at the Hilo and Nawiliwili

stations. When the transformed distribution is mixed

with those from other subduction zones, the effect

of omitting the record-breaking event is minimal.

This indicates that the reconstructed distributions are

more robust than the MLE distributions, with regard

to adding one record-breaking event.

In contrast, strong outliers in the scaling of far-

field tsunami amplitude with respect to seismic

moment can affect the reconstruction procedure.

These outliers are most often caused by measurement

error, particularly in the determination of moment

magnitude of historic earthquakes where instrumental

records are deficient in long-period energy. For

example, using a magnitude of 7.5 for the 1918 Kuril

event that is listed in the Centennial catalog excludes

many regressions involving the Kuril-Kamchatka

subduction zone for the four tide gauge stations

analyzed. In contrast, using GELLER and KANAMORI’S

(1977) magnitude estimate of 8.25 for this event

results in significant regressions associated with this

subduction zone for all of the stations shown in

Fig. 8, except Crescent City. Other data problems

related to tsunami recording, such as clipping, data

gaps, and tide gauge response, can cause more subtle

errors that may also affect the results from

reconstruction.

There is substantial evidence that the parameters

of moment distribution for subduction zones are

globally constant (e.g., KAGAN 1997, 1999). Both the

MLE and reconstruction analysis indicate that the

corner amplitude for tsunami distributions varies

significantly, owing to both source (i.e., propagation

distance, radiation pattern) and site effects. However,

is the power-law exponent b for tsunami amplitude

distributions globally constant? Within the bounds

uncertainty for both the MLE and reconstructed dis-

tributions, we cannot reject the hypothesis that b is

constant, although the b predicted by reconstruction

is generally higher than that predicted by the MLE.

Further work is needed to verify this hypothesis, but

if true, a constant power-law exponent may simplify

probabilistic hazard analysis for tsunamis.

10. Conclusions

We have shown that the probability distribution of

tsunami amplitudes is directly related to the distri-

bution of seismic moment at subduction zones. To

demonstrate this, we developed a method to recon-

struct tsunami amplitude distributions using simple

amplitude-moment scaling relations, in lieu of

numerical modeling, and aggregating the transformed

tsunami amplitude distributions from individual

subduction zones to achieve the final reconstructed

distribution. In testing different sets of seismic

moment distribution parameters that are globally

constant, a power-law exponent (b) of 0.5 (KAGAN

2010) and a corner moment magnitude of (Mc) of

9.58 (BIRD and KAGAN 2004) provide the best fit. In

comparison to tsunami amplitude distributions esti-

mates from maximum likelihood, the reconstructed

distributions consistently exhibit higher effective

corner amplitudes (Ac) and are less susceptible to

changes in Ac caused by a single record-breaking

event. As a result, the hazard associated with excee-

dance amplitudes near Ac is higher for the

reconstructed distribution compared to the maximum

likelihood distribution.
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Regression for the Hilo station for South America sources with

(black) and without (green) the 1960 event
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