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Forecasting of one-dimensional time series previously has been used to help distinguish
periodicity, chaos, and noise. This paper presents two-dimensional generalizations for making
such distinctions for spatial patterns. The techniques are evaluated using synthetic

gnhatial natterns and then are annlied to 2 natural examnle: rinnles formed in sand by blowin

spatial patterns and then are applied to a natural example: ripples formed in sand by ing

wind. Tests with the synthetic patterns demonstrate that the forecasting techniques can

be applied to two-dimensional spatial patterns, with the same utility and limitations as when
applied to one-dimensional time series. One limitation is that some combinations of
periodicity and randomness exhibit forecasting signatures that mimic those of chaos. For
example, sine waves distorted with correlated phase noise have forecasting errors that increase
with forecasting distance, errors that are minimized using nonlinear models at moderate
embedding dimensions, and forecasting properties that differ significantly between the original
and surrogates. Ripples formed in sand by flowing air or water typically vary in

geometry from one to another, even when formed in a flow that is uniform on a large scale;
each ripple modifies the local flow or sand-transport field, thereby influencing the
geometry of the next ripple downcurrent. Spatial forecasting was used to evaluate the
hypothesis that such a deterministic process—rather than randomness or quasiperiodicity—is
responsible for the variation between successive ripples. This hypothesis is supported by

a forecasting error that increases with forecasting distance, a greater accuracy of nonlinear
relative to linear models, and significant differences between forecasts made with the

original ripples and those made with surrogate patterns. Forecasting signatures cannot be
used to distinguish ripple geometry from sine waves with correlated phase noise, but

this kind of structure can be ruled out by two geometric properties of the ripples: Successive
ripples are highly correlated in wavelength, and ripple crests display dislocations such

as branchings and mergers.

i. INTRODUCTION

Two-dimensional chaotic (nonperiodic, deterministic)
patterns have been created with experiments in fluids,™?
video feedback,’ and computers,* but the analysis of nat-
vrally occurring spatial patterns has lagged behind the
analysis of one-dimensional time series. The procedures
presented here for forecasting spatial patterns are two-
dimensional generalizations of several techniques that re-
cently have been developed for forecasting one-
dimensional time series.””'* The purpose of this paper is to
evaluate the capabilities of two-dimensional forecasting us-
ing a variety of synthetic images and then apply those
techniques to natural sand ripples formed by wind.

The underlying principle of the time-series forecasting
is to predict future behavior for any initial state by con-
sulting a catalog of how the system evolved at other times
when initial conditions were similar. Utility of this tech-
nigue is based on implicit assumptions that the system is
stationary -and recurrent to arbitrarily close conditions.
Predictions are made by selecting a predictee with a known
history and known future behavior, searching the catalog
for one or more events where the recent time-history ap-

proximates the time-history of the predictee, and then us-

ing the future behavior of these nearest neighbors in the
catalog to predict the future behavior of the predictee. For
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some purposes—such as weather forecasting, financial

forecasting, or noise reduction—determining future behav-
ior is the primary goal of the forecasting. In contrast, for
the purpose of characterizing system dynamics, predictions
are made primarily to quantify prediction errors as a func-
tion of prediction distance,*® embedding dimension, or the
number of nearest neighbors used to make the predic-
tions.'® This predictive process can be thought of as a tech-
nique for evaluating the extent to which initial conditions
determine future states of the system. System dynamics can
also be characterized by comparing forecasts with those
made from surrogate data sets that mimic some—but not
all—properties of the original time series.!>!* Eventually it
may become possible to use time series or spatial patterns
to construct rules or equations that describe system dy-
namics.'+'¢

ll. FORECASTING PROCEDURE

To forecast a one-dimenstonal time series of a variable
(x),5° the series is split in half. One half is used as a
catalog or fitting set to relate the recent history of the
system to future states. The other half of the time series
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. catalog. At any time (#), the history of the system for m

steps through time can be represented by a single point in
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FIG. 1. Diagrammatic representation of the forecasting procedure. An image is divided into two parts, ane part for use as a catalog and one part to test
predictions. A small area between these two regions is not used in either set, to avoid lateral correlation. The image in this example is 100 pixels square;
predictee plaquettes are 1Q pixels square, corresponding to an embedding dimension of 100. Each predictee plaquette is compared with all 10-by-10
plaquettes in the catalog, and nearest neighbors are evaluated by the leasi-squared differences of corresponding pixels in the predictee and cataiog
plaquettes. The pixels in a strip adjacent to the nearest neighbors in the catalog are used to predict the values of a corresponding strip of pixels adjacent
to the predictee. Forecasts can be made using either a local mean value model or a local linear AR model, for a variable number of nearest neighbors
(ranging from the single nearest neighbor to the entire set of plaquettes in the catalog). Forecasting errors are measured by comparing the predicted
values with the actual values adjacent to the predictee; errors are expressed either as a correlation coefficient between predicted and observed values (Ref.
9 or as the rms error normalized to the standard deviation of the data (Ref. 10). The predictive process is illustrated using a two-dimensional image,
but the procedure is computationally identical to representing each plaquette as a point in 100-dimensional space, finding nearest neighbors in this space,
and making predictions by tracking the trajectories of those points to their future locations. The image being forecast is a gray-scale image of 2
quasiperiodic pattern created by superimposing 3 trains of sine waves having differing orientations, wavelengths, and planform sinuosities; values of pixels
range from zero (white) to 255 (black).

m-dimensional space; the coordinates of that point are
given by (x,X,_1,X,_2,..sXs 1 1_m)- A prediction is made by
placing the predictee in this m-dimensional space, locating
m or more nearest neighbors, and then using least squares
to solve

m
Xpp1:stpt ‘Zl LDTEE P (1)
=
.for the coefficients that best relate x,..; to

XpXy_12X1_geaX 1 N the catalog (fitting set). These
values for the coefficients are used to predict x,,  for the
testing set. The predicted value is then compared with the
actual value in the testing set, and predictability is quanti-
fied either by the rms error of the predictions8 or by the
correlation coefficient between predicted and observed val-

ues.” Alternatively, predictions could be computed using
the simplex method.’

The procedure for forecasting two-dimensional spatial
patterns is analogous to the procedure for time series. A
digital image is divided in half; one half is reserved as a
catalog, and the other is used to provide predictee plaque-
ttes and evaluate predictions (Fig. 1). Each predictee pla-
quette (and every plaquette with similar size and shape in
the catalog) can be represented by a single point in space,
where the total number of dimensions is equal to the num-
ber of pixels in the plaquette, and the location in each
dimension is defined by the intensity of a corresponding
pixel. The number of dimensions is equal to the length ()
of the plaquette measured in the direction toward which
the forecast is being made multiplied by the width (»#) of
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the plaquette in the orthogonal direction. Locating nearest
neighbors requires searching the mn-dimensional space to
find the catalog points closest to a predictee; this is com-
putationally eguivalent to shifting the predictee plaquette
through every location in the catalog image and using the
sum of the squared differences in pixel intensities to deter-
mine which plaguettes are most similar to the predictee.
Predictions can be made using either the mean value at the
corresponding site for the nearest neighbors in the catalog
(local constant value predictions) or using nearest neigh-
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for the coefficients @ (qq, and @y, through a,,,, by a
least-squares fit. The coefficients evaluated for the nearest
neighbors in the catalog are then applied to the predictee
plaquette in the testing set to make a local linear AR pre-
diction. Equation (2) describes a prediction made along a
vertical column (#) that is centered left-to-right with re-
spect to a plaquette having a width {r) that is an odd
number of pixels.

Prediction error is evaluated as a function of prediction
distamce,s’9 embedding dimension, and as a function of the
number of nearest neighbors (%) used to make the predic-
tions.'? Variation with distance and embedding dimension
quantify the extent to which local structure of a spatial
pattern defines the adjacent structure; and variation with
the number of neighbors evaluates the relative importance
of low-dimensional and high-dimensional (or stochastic)
dynamics. An additional technique—comparison with
forecasts made from surrogate data—was applied to test
the null hypothesis that observed spatial irregularity re-
sults from linearly correlated noise, rather than nonlinear
dynamics.'>1?

11l. FORECASTING SIGNATURES

IMAGES
A. Predictability as a function of distance

Six synthetic images (Figs. 1-6) were created and an-

alyzed: a quasiperiodic pattern, a spatio-temporal chaotic -

pattern, and four kinds of patterns with random attributes
(two-dimensional white and brown noise, random place-
ment of small uniform patterns, and randomly distorted
sine waves). In the one-dimensional case, predictability of
periodic time series remains high regardless of how far the
predictions are projected into the future. Similarly, predict-
ability is high for periodic and quasiperiodic spatial
patterns—regardless of prediction distance—provided that
the sample area is large enough to contain a good variety of
the relative phasing of the individual periodic components
(Fig. 7). If the sample plaquette is too small, however,
low-frequency information is not included, and predictabil-
ity decreases and increases with prediction distance in
what resembles a beat-frequency process.

The forecasting signature of a chaotic pattern (specif-
ically, a spatio—tempaoral transient chaotic pattern) is illus-

FIG. 2. Spatio—~temporal chaotic pattern created using the dripping hand-
rail, coupled-lattice, model of Crutchfield and Kaneko (Ref. 4). Pixel
intensity at 256 lattice sites (left to right across the image) represents the
thickness of a film of water at 256 steps through time (top to bottom).
Mean “wavelength” is approximately 30 pixels.

trated using a synthetic image (Fig. 2) that was created
using the “dripping handrail” model.* Each vertical col-
umn in the image represents conditions at a different site
along a handrail; each horizontal row represents a step

FIG. 3. Speckled pattern created using random numbers to define the
intensity of each pixel in a 100-by-100 image. This is an example of
two-dimensional white (uncorrelated) noise.
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FIG. 4. Image created by repeatedly superimposing circular patterns at
random locations. Image is 256 pixels square, and the diameter of each
circle is 40 pixels. The structure of each circular area is deterministic, but
the location of each circle is not.

through time. Pixel intensity represents the thickness of a
film of water on the lower surface of the handrail. At each
site, the thickness of the film of water increases through
time (top-to-bottom in the image) until surface tension is
exceeded at that site, and water drips from the handrail.

FIG. 5. Pattern created by sequentially faulting a plane 2000 tines at
random locations. The resulting image is a 256 pixel square of two-
dimensional 1//* (brown) noise; in this example, a=2.

FIG. 6. Pattern created by randomly distorting z field of sine waves with
correlated phase noise, as defined by Eq. (3); € is defined by the corre-
sponding local value in Fig, 3.

Coupling between adjacent sites causes water to flow along
the one-dimensional lattice that represents the handrail.
These rules produce a chaotic pattern in which the value at
any site is a deterministic nonlinear function of the preced-
ing values at that site and at the two adjacent sites, in
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FIG. 7. Plot of predictability (correlation coefficient between predicted
and observed pixel intensities) as a function of forecasting distance for the
six patterns in Figs. 1~6. Predictions in this plot were based on local
constant value models. Plot shows four classes of forecasting behavior:
predictability remains at a relatively high, constant, value for all predic-
tion distances (quasiperiodic pattern); predictability drops to zero at a
prediction distance of only 2 single pixel (two-dimensional white noise);
predictability is high for short distances but decays to a value of zero over
greater distances (spatio—temporal chaos, randomly placed circular pat-
terns, and distorted sine curve); and predictability decreases with distance
but does not stabilize at a value of zero (two-dimensional brown noise).
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essentially the same manner that each value in a chaotic
time series is a function of preceding values. The resulting
pattern has a predictability that decays to a stable value of
zero {at a larger number of time steps than plotted in Fig.
7). The predictability is high for a distance of several
“wavelengths™ because of the deterministic structure of the
pattern, but the system is unpredictable for large distances.

The simplest kind of random spatial pattern—a speck-
led white-noise pattern in which the intensity of each pixel
is determined by a random number, and the value at each
pixel is independent—exhibits a predictability that falls to
zero at a prediction distance of only a single pixel (Figs, 3
and 7). The pattern is completely unpredictable because it
coniains no deterministic structure. Previous work on fore-
casting one-dimensional time series has considered a com-

biriation of a periodic signal and uncorrelated noise. Sugi- -

hara and May® showed that observational noise reduces the
predictability of the system, but the predictability never-
theless remains relatively constant with prediction time.
Unlike the uncorrelated noise evaluated by Sugihara
and May, the predictability of correlated noise and some
combinations of deterministic and randomness decay with
prediction distance, thereby mimicking the property Sugi-
hara and May found for ¢haotic systems. To identify these
kinds of systems requires other tests such as those de-
scribed in later sections (variation of predictability with
number of nearest neighbors or comparison with snrrogate
data). One such combination of determinism and random-
ness is a spatial pattern created by random placement of a
smaller pattern (for example, concentrically graded circles
are randomly placed in Fig. 4). Predictability for this kind
of pattern is high for short distances and decays to zero
(Fig. 7). The high predictability for short distances results
from the deterministic structure of the graded circies. Ran-
dom placement of these circles, however, causes the pre-
dictability to decrease to zero as distances approach or
exceed the diameter of the circles. The predictability of
such a pattern crudely resembles that of chaotic patterns,
but in this case the decay appears nearly linear. Although
these results were obtained with two-dimensional images, a
decay in predictability also could be expected for one-
dimensional time series from systems in which a constant

ayant nennre at randam ar irreonlar timeae
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A different kind of random pattern can be synthesized
by repeatedly faulting (uplifting or down-dropping) the
two regions of a plane separated by randomly placed lines
{Fig. 5), creating patterns that can be thought of as two-
dimensional 1/ noise (where £ is frequency, and ¢ is a
constant; in this example e =2). The predictability of such
patterns decays with distance, but does not necessarily sta-
bilize at zero (Fig. 7). For example, in the image shown in
Fig. 5, systematic low-frequency differences between the
testing half and the catalog half of the image cause long-
distance predictions to have a negative correlation (predic-
tions are worse than random). This example demonstrates
that this kind of forecasting is not appropriate for nonsta-
tionary systems.

The final synthetic pattern (Fig, 6) to be considered
was defined by

y=sin(x+e), p (3)

where y is pixel intensity, x is distance from top to bottom
in the image, and ¢ is the local value in the accompanying
image of brown noise (Fig. 5). The resulting pattern con-
tains both deterministic (x) and random (g)’ attributes,
and represents a field of sine waves with a cortelated phase
distortion. Predictability of this pattern decays and stabi-
lizes at zero (Fig. 7), as do forecasts of chaotic patterns.
Comparison of the predictability curves in Fig. 7 illus-
trates that identifying chaotic systems is more difficult than
suggested by Sugihara and May.’ A variety of systems—
including correlated noise or combinations of determinism
and randomness—exhibit forecasting érrors that increase
with distance. The difficult problem of distinguishing such
systems from low-dimensional chaos is congidered below.

B. Predictability as a function of number of nearest
neighbors

Recently Casdagli™® described aj_tiechnique to use the
character of forecasting errors to evaluate the relative im-
portance of linear and nonlinear dynamics of a system.
This technigue measures short-term forecasting error as a
function of the number of neighbors (k) used to make
predictions. At one extreme (stochastic linear autoregres-
sive modeling), the coefficients in Egs. (1} or (2) are eval-
nated once for the entire fitting set, and the resulting coef-
ficients are used for all forecasis of the testing set. By
maximizing the size of the sample used to evaluate the
coefficients, forecasts maximize noise reduction but mini-
mize sensitivity to the specific initial conditions for the
event that is being forecast. At the other extreme (nonlin-
ear deterministic modeling) the coefficients in Eqs. (1) or
(2) are reevaluated for each forecast, using only a small
sample of nearest neighbors in the fitting set. Noise reduc-
tion is poorer because the sample is smaller, but sensitivity
to initial conditions is improved because the nearest neigh-
bors used to evaluate the coefficients are chosen selectively.
At intermediate numbers of nearest neighbors, modeling is
both nonlinear and stochastic. Casdagli argued that the
dynamics of a system can be characterized by the kind of
model that makes the most accurate short-term forecasts.
Thus, low-dimensional nonlinear chaotic behavior can be
distinguished from high-dimensional or stochastic behav-
ior, depending on which model gives the most accurate
forecasts.

This technigue was applied to the six spatial patterns
shown in Figs. 1-6. As expected, uncorrelated noise, cor-
related noise, and quasiperiodicity were most accurately
described by linear stochastic models {Fig. 8). Determin-
ing the relative accuracy of linear and nonlinear models,
however, is more complicated than comparing forecasting
errors that were evaluated using a single arbitrary embed-
ding dimension and delay time. Computations made using
linear time series (sinusoidal series with one or more fre-
quencies and a few percent of added uncorrelated noise)
found that nonlinear stochastic models performed better
over a wide range of embedding dimensions. In some cases,
the advantage of the nonlinear models over linear models
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FIG. 8. Forecasting error plotted as a function of the number of nearest
neighbors used to make predictions. Local linear forecasts are for dis-
tances of 1 pixel. Errors are normalized with respect to the standard
deviation of the original image. Forecasts for the quasiperiodic image
shown in Fig. 1 are based on plaquettes 10 pixels square, corresponding to
an embedding dimension of 100. The total number of neighbors in the
catalog (kpopar) is 1271; number of predictees is 196. An embedding
dimension of 100 was found to give better forecasts than smaller values (a
factor of 20 better than an embedding dimension of 4 and a factor of 10
better than an embedding dimension of 25); not all plaquette shapes were
tested. -Forecasts for the uncorrelated noise in Fig. 3 are based on 5 pixel
square plaquettes (corresponding to an embedding dimension of 25). The
best model is a linear stochastic model that employs the entire catalog
{krorar=2116; 529 predictees). The model merely predicts the mean
value of the image; the rms error is thus equal to the standard deviation
of the original image, resulting in a normalized rms error equal to 1.
Forecasting errors for the randomly placed circular patterns in Fig. 4 are
based on 2 pixel plaquettes. The lowest forecasting errors are for nonlin-
ear stochastic models employing tens or hundreds of nearest neighbors
(kroraL =25 830; 325 predictees). For the correlated noise shown in Fig.
.5, plaquette size is 4 pixels square, but only the 4 corner pixels are eval-
uated, corresponding 1o an embedding dimension of 4. The best model is
a linear stochastic model employing all neighbors in the catalog (kroraL
=18 724; 775 predictees). Forecasts for the distorted sine curve in Fig. 6
are based on plaquettes 5 pixels square {only sampling every other pixel
in the two dimensions, corresponding to an embedding dimension of 9;
kroraL=17 365; 775 predictees). The lowest forecasting errors are for
nonlinear stochastic models employing hundreds of nearest neighbors.
The advantage of such models over the best linear model that was tested
is approximately 11%.

exceeded an order of magnitude. For all of these linear
series, however, forecasting error could be minimized using
linear moedels with relatively large embedding dimensions;
in some cases it was necessary to increase the embedding
dimension to nearly 100. At lower embedding dimensions,
no models performed as well as the high-dimension linear
models, and, moreover, the nonlinear models outper-
formed linear models.

These results illustrate a possible pitfall of using fore-
casting error to distinguish linear and nonlinear dynamics.
The relative performance of the models depends in part on
such modeling parameters as embedding dimension and
delay time. The fact that a nonlinear model outperforms a
tinear model at low embedding dimensions does not dem-
onstrate that the system is nonlinear; the system might be

Tri An]nr‘ auvoar 1™
modeled even more accurately using a high-dimension lin-

ear model. This demonstrates the importance of attempt-
ing forecasts for a range of embedding dimensions. and
delay times. .
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FIG. 9. Forecasting error for the dripping handrail image shown in Fig.
2, with additive uncorrelated noise. Forecasts (208 predictees) are for
distances of 1 pixel and are based on plaquettes 3 pixels wide by 1 pixel
high, (corresponding to an embedding dimension of 3, the known dynam-
ics of the equations used to create the image). For noise levels of 0% and
19%, the best models are nonlinear, employing few of the 19 656 neighbors
in the catalog. For noise levels of 109% and 100%, errors are much
greater, and the best models are at the linear stochastic extreme.

In contrast to the uncorrelated noise and sine curves
that are best modeled with linear models, the chaotic drip-
ping handrail pattern is most accurately modeled near the
deterministic nonlinear extreme (Fig. 9). This chaotic pat-

tern also differs from the linear patterns in that increasing
the embeddine dimension results in much poorer forecasts.
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If uncorrelated noise is added to the drlppmg handrail
pattern, forecasting accuracy decreases—particularly for
the nonlinear forecasts. Noise levels approaching or ex-
ceeding 10% preferentially degrade the nonlinear predic-
tions to.such an extent that nonlinear models become less
accurate than linear models. Evidently, sensitivity to initial
conditions of the nonlinear model has become less an ad-
vantage than noise-reducing capability of the linear model.

The most accurate forecasts for the randomly placed
circles and distorted sine curve were obtained using non-
linear stochastic models (Fig. 8), but the improvement
over linear models is relatively slight (16% and 11%, re-
spectively). The sinusoidal pattern with correlated phase
distortion [Fig. 6, as defined in Eq. (3)], is particularly
interesting because the combination is more accurately
modeled by nonlinear stochastic models, despite the fact
that the periodic and random components are individually
forecast most accurately using linear models. In this case,
the cause of the nonlinearity is not low-dimensional chaos
but rather is a sinusoidal transformation of correlated
noise; deviation from a linear, periodic, sinusoidal pattern
results from randomness. As in the case of the dripping
handrail, however, increasing the embedding dimension re-
sults in poorer forecasts.

C. Comparison with surrogate images

Another nppfnach in fnrptmehng has been to ¢compare

forecasts of an original time series with forecasts made
from surrogate series.!>!> The surrogates are created to
mimic some, but not all, attributes of the original. For
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FIG. 10. Forecasting errors for distorted sine waves (Fig. 6) and 10
surrogates. The surrogates have the same power-spectral magnitudes as
the original, but have randomized phases. Forecasts (for 250 predictees)
are for 1 time step and an embedding dimension of 9. Predictions for the
original image are best using nonlinear stochastic models employing sev-
eral hundred nearest neighbors (out of the 34 364 in the catalog).

example, surrogates made to have the same FFT magni-
tudes as the.original—but having randomized phases---can
be used to test the null hypothesis that the original time
series is linearly correlated noise. If the original and sur-
rogate time series have significantly different forecastabil-
ity, then this hypothesis can be rejected.

A two-dimensional analog of this technique was ap-
plied to the distorted sine waves with correlated phase
noise illustrated in Fig. 6. A two-dimensional FFT was
made of the original, the phases were randomized, and
surrogate images were created by inverting the FFTs.
Forecasts differ between the original and the 10 surrogates
(Fig. 10). The surrogates are forecast most accurately us-
ing linear models; the original is forecast most accurately
by nonlinear models at relatively low embedding dimen-
sion, and those forecasts are significantly better than the
best models for the surrogates.

These forecasting properties distinguish the original
from linearly correlated noise, and lead to the conclusion
that the distorted sine pattern contains a nonlinear struc-
ture not present in the surrogates. But as noted in the
preceding section, the nonlinearity arises from the sinu-
soidal transformation of correlated noise, not low-
dimensional chaos. Although the surrogate technique cor-
rectly rejects the null hypothesis, rejecting this particular
null hypothesis is insufficient to demonstrate chaos.

IV. GEOMETRY AND DYNAMICS OF RIPPLES AND

niieEe
YUY

A. Background

Virtually all studies of the geometry of bedforms such
as ripples and dunes have been directed at determining
how mean bedform geometry varies for differing flow con-
ditions. In contrast, the work reported here was under-
taken to understand differences in geometry of adjacent

bedforms in a train created by a single flow. Hypotheses to
explain this variation include quasiperiodicity, random-
ness, or deterministic chaos resulting from modification of
the flow or sand-transport field by the bedform immedi-
ately upstream.

Mogt nrevinme mndele af rinn
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treated such bedforms as periodic'™'® or random,'® but
several morphologic and behavioral characteristics suggest
that the complexity is self-organized. Even where flow is
uniform (when averaged on a scale that is large relative to
individual ripples), geometric variation of bedforms is
ubiquitous. A deterministic cause for this complexity is
suggested by experiments and theoretical models demon-
strating that ripples perturb the local boundary layer or
sand-transport field, thereby modifying the conditions that
shape the next ripple downstream.™®* In wind, ballistic
grain impacts are believed to be more important than fluid
effects, and self-organization has been suggested to arise
from a sorting process that causes adjacent ripples to attain
similar sizes and migration speeds.”*?!

In flowing water, this downstream coupling occurs be-
cause the local flow near the bed is influenced directly by
the bedform immediately upstream. In some flows, placing
a single artificial ripple or obstacle on a flat bed can be
sufficient to induce formation of a train of ripples down-
stream,”?2 even in a flow where ripples otherwise would
not form [Fig. 11(a)]. Similar spatial patterns can be sim-
ulated using the dripping handrail model starting from ini-
tial conditions that are uniform except for a slight pertur-
bation [Fig. 11(b)]. In the model, each horizontal row in
the image represents a step through time and is computed
from the conditions at the previous time. In the real ripple
pattern, each row represents an increasing distance down-
stream and develops in response to upstream conditions. In
both the real and computational examples, the patterns
that develop illustrate a similar sensitivity to initial (pre-
vious or upstream) conditions.

A complete treatment of ripple dynamics requires an
additional dimension of complexity beyond that implied
above. The discussion above implies that the downcurrent
ripple geometry is a function of upcurrent geometry—
unchanging through time. Although this is true for some
flows {such as iiiusirated in Fig. 11{a}], in most fiows rip-
ple dynamics is more properly considered as a two-
dimensional spatial system that evolves through time as
individual ripples interact while migrating downcurrent.

In some ripple fields, down-current coupling produces
current-parallel lanes of ripples with abrupt discontinuities
between lanes.?* Such structure implies that across-current
coupling of the real ripples is weak relative to down-
current coupling, an hypothesis that is supported by com-

nutatinnal avnarimante with the drinning handrail madal
prialiofla: CApCOINeNnSs Wil Ne GIPPINE fanaial Modl.,

In addition to these reported spatial variations in individ-
ual ripples in uniform flows, both field observations and
laboratory experiments have found that the planform ge-
ometry of dunes becomes more complex as flow strength
increases.”*?> This increasing spatial complexity is analo-
gous to the increasing complexity observed at increasing
flow strengths in couette cylinders! and convection cells.

ava
-

CHAQS, Vol. 2, No. 4, 1992

Downloaded 28 Apr 2005 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



532 ;o David M, Rubin: Use of forecasting signatures
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FIG. 11. Development of instabilities beginning from a slight artificial perturbation. (a) Planform view of an experiment to create ripples on a flat bed
in flowing water. No sand transport occurred until a mound of sand was placed on the bed. The mound disturbed the flow, producing another bedform,
which in turn disturbed the flow, and so on downcurrent (from top to bottom). Photograph from Southard and Dingler (Ref. 23), digitally processed
to reduce perspective distortion. (b) Computer simulation of spatial differences using the dripping handrail model, beginning with initial conditions (top
of image) that were uniform except for a single pixel. Image is a recomputation of Crutchfield and Kaneko {Ref. 4) (Fig. 45). In both (a) and (b},
conditions at the top of the image determine the structure at lower locations.

B. Forecasting ripple geometry Predictability of the digitized ripple pattern decays to a
A photograph of ripples formed by wind (Fig. 12) was value that fluctuates around zero (Fig. 13). As discussed

digitized and analyzed using the spatial forecasting tech- ~ above, such a forecasting signature does not result from

niques discussed above; pixel intensity is used to represent ~ White noise or from periodic or quasiperiodic systems, but

ripple geometry. Unlike the synthetic images, in which in-  can result from either chaos or some combinations of pe-

tensity is proportional to elevation, intensity in the digi-  riodicity and randomness.

tized photograph image is more nearly a function of slope. As in the case of one-dimensional time series, forecast-

CHAQS, Vol. 2, No. 4, 1992
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FIG. 12. (a) Photograph of natural ripples formed by wind blowing over
a sand bed that is otherwise flat. Wind direction is from top to bottom;
ripple wavelength is approximately 10 cm (corresponding to 8.3 pixels
after the photograph was digitized). (b) Profile across ripples in (a),
showing values of pixels along the left edge of the image, from top to
bottom (after digitization).
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FIG. 13. Predictability of ripples shown in Fig. 12 (a) is initially high but
decays to zero by a distance of approximately 60 pixels (7 wavelengths)
downwind. This predictability can result from chaos or combinations of
periodicity and randomness.

ing errors of spatial patterns depend on embedding dimen-
sion (actually two embedding dimensions—an embedding
length and an embedding width, corresponding to the
number of pixels in the plaquette’s downwind and across-
wind directions). The effect of embedding dimension on
forecasting error is shown in Fig. 14. The best forecasts are
obtained using an embedding length of 9 pixels (slightly
greater than the mean wavelength of 8.3 pixels) and a
width of 5 pixels. This result is in good agreement with the
hypothesis that the geometry of any one ripple depends on
the geometry of the ripple immediately upstream.

Forecasting error was also measured as a function of
the number of nearest neighbors used to make the
predictions—for the original ripples and 11 surrogates
(Fig. 15). The model that best predicts the original pattern
is a nonlinear stochastic model, which offers a 60% im-
provement over the best linear model. Forecasting errors
for the original image are significantly better than for the
surrogates. (The difference is as great as 8 sigmas.'? That
is, the difference between the error for the original and the
mean error for the surrogates is 8 times the standard de-
viation of the errors for the surrogates.) Both of these
properties (most accurate predictions with a nonlinear
model and significant differences in forecasting error be-
tween the real and surrogate pattern) are consistent with
the hypothesis that the structure is chaotic, but are also
compatible with a field of sine curves with correlated phase
distortion.

Differences between the original and surrogate images
are visually apparent, as has been noted for original and
surrogate time series.'> Crests and troughs of the surrogate
wave forms are relatively discontinuous and irregular in
planform, and high-frequency wave forms are visible as
separate peaks. These high-frequency wave forms are not
visible in the original. Evidently, the phases of these har-
monics in the original are related in such a way as to
modify the shape of the ripples rather than defining sepa-
rate smaller ripples. ,

Visual ingpection of the original ripples suggests that
variations in ripple geometry are not random, but rather
that similar sizes, orientations, and shapes tend to be or-
ganized in groups [Figs. 11(a) and 12]. To document one
such property of the ripples in Fig. 12, the correlation
coeffictent was calculated between all successive pairs of
ripple wavelengths (measured in a direction normal to the
mean crest orientation). The resulting correlation coeffi-

Alnemdt fNE H

mana vaa o bard s LT T -y mdemra i n oy,

Cieiit \U.J) demonstrates that variation between udjuucut
ripples is at least partially deterministic. In contrast, the
structure defined by Eq. (3) has a deterministic mean
wavelength, but fluctuations around the mean are uncor-
related. Moreover, crests of the real ripples are disrupted
by dislocations (branchings and mergers) that are not
present in sine waves distorted by correlated phase noise.
Although these geometric properties can be used to reject
this particular null hypothesis, it is possible that other

mnra comnlinatad ~camhbinatinne Af nmerindisity and ran.
mere compiicatec comoinatllions of peneCicily and ran

domness might be formulated to mimic the forecasting sig-
natures, correlated wavelengths, and dislocations of the ob-
served ripples.
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FIG. 14. Predictability of wind ripples in Fig. 12 (a) as a function of
embedding dimension. The best forecasts are based on plaquettes that
extend approximately 1 wavelength downwind and one-half wavelength
acrogs-wind.

V. CONCLUSIONS

A. Utility and limitations of spatial forecasting

A variety of techniques for forecasting time series can
be applied to spatial patterns—subject to the same lintita-
tions. Chaotic time series and patterns cannot be conclu-
sively identified by properties of forecasting errors, because
nonchaotic systems can mimic one or more of the forecast-
ing signatures of chaotic systems, For example, a sine
curve with correlated phase distortion [Fig. 6, as defined in
Eq. (3)] has (1) forecasting errors that increase with pre-
diction time {or distance), (2) errors that are minimized
using nonlinear models at moderately low dimension, and

100 1 —o— Ripplas
—-=— Surrogates
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FIG. 15. Forecasting error as a function of number of nearest neighbors
for wind ripples and 11 surrogates. Plaquette size is 9 pixels (downwind}
by 5 pixels (across-wind), as determined to be optimum in Fig, 14. The
best nonlinear model offers a 60% improvement over the best linear
madel, and the original differs considerably from the surrogates (values of
sigma as large as 8).

(3) errors that differ significantly from those of surrogates.
Although forecasting cannot be used to distinguish all
kinds of dynarmics, it is nevertheless a useful technique for
evaluating some null hypotheses and for determining what
kinds of synthetic or surrogate systems mimic an original.

B. Natural ripples

The observed dynamic behavior of ripples (downcur-
rent coupling, sensitivity to initial perturbations, organiza-
tion into lanes, modification of the near-bed flow and sand-
transport field) suggest that complexity of ripple geometry
may result from nonperiodic, deterministic, nonlinear in-
teraction between ripples—rather than randomness or
quasiperiodicity. This hypothesis is supported by three
forecasting properties of the ripples: decaying predictabil-
ity with forecasting distance, minimized error using non-
linear models at moderate embedding dimension, and sig-
nificant differences in forecasting properties from surrogate
patterns. Ripple geometry is most accurately forecast using
sample predictees that extend one wavelength downwind
and one-half wavelength across-wind; this result supports
the idea that the geometry of any one ripple depends on the
geometry of the ripple immediately upstream.
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