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Nonperiodic eddy pulsations

D. M. Rubin and R. R. McDonald!
U.S. Geological Survey, Menlo Park, California

Abstract. Recirculating flow in lateral separation eddies is typically weaker than main
stem flow and provides an effective environment for trapping sediment. Observations of
recirculating flow and sedimentary structures demonstrate that eddies pulsate in size and
in flow velocity even when main stem flow is steady. Time series measurements of flow
velocity and location of the reattachment point indicate that these pulsations are
nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly
different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our
experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is
sufficient to cause the leeside flow to change from a periodic sequence of vortices to a
nonperiodically pulsating lateral separation eddy, even if flow conditions are otherwise
unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is
added. First, vortices that are shed from the cylinder deform and become irregular as they
impact the plate or interfere with remnants of other vortices near the reattachment point.

Second, these deformed vortices and other flow structures are recirculated in the lateral
separation eddy, thereby influencing the future state (pressure and momentum
distribution) of the recirculating flow. The vortex deformation process was confirmed
experimentally by documenting spatial differences in leeside flow; vortex shedding that is
evident near the separation point is undetectable near the reattachment point. Nonlinear
forecasting techniques were used in an attempt to distinguish among several possible kinds
of nonperiodic flows. The computational techniques were unable to demonstrate that any
of the nonperiodic flows result from low-dimensional nonlinear processes.

Introduction

Purpose

The purpose of this paper is to document, characterize, and
attempt to explain the origin of irregularly pulsating flow in
lateral separation eddies; previous hydrologic and sedimento-
logic work has largely ignored this property of recirculating
flow. This study began with field observations of sedimentary
structures (oscillation ripples), which showed that lateral sep-
aration eddies pulsate even when main stem flow is steady. The
field situation, however, is complicated in geometry (irregular
banks and a wide range of roughness elements), is possibly
affected by wind, and exists at high Reynolds number. To
minimize these complexities, we used data from laboratory
lateral separation eddies. One set of lab data was from such a
large flume (4 m width) that the flume can be thought of as a
creek or small river (see Schmidt ef al. [1993] for a description
of the flume and related recirculation experiments). The sec-
ond set of data was collected in a very small flume and was not
an attempt to model natural rivers; rather it was an experiment
to see if a grossly oversimplified system (well-regulated main
stem flow, extremely simple channel geometry, and relatively
low Reynolds number) would retain the pulsating behavior
observed in the field and large flume. Finally, we used spectral
analysis and nonlinear forecasting to characterize the observed
flows and to help explain the origin of the observed pulsations.
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Background

Flow separation, recirculation, and reattachment occur in
virtually all fluvial channels, wherever the bed or bank bends
too abruptly for the flow to follow (Figure 1). Because the
relatively weak flow within and adjacent to recirculation zones
is a prime site for deposition, recirculation processes are fun-
damental in reducing or eliminating bank irregularities and in
controlling the morphology of alluvial channels [Leopold et al.,
1960; Leeder and Bridges, 1975]. Recirculating flow also has
been recognized as an important control of deposition in bed-
rock channels [Rubin et al., 1990; Schmidt, 1990; Schmidt and
Graf, 1990; Andrews, 1991; Nelson, 1991; Schmidt et al., 1993].

Most hydraulic studies of lateral separation eddies in rivers
have been directed at generalizing mean flow properties [Yeh
et al., 1988] or characterizing periodic behavior resulting from
vortex shedding, but a number of studies [Cherry et al., 1984;
Driver et al., 1987; Simpson, 1989] have documented the non-
periodic behavior of flow within separation eddies, even in
experiments where flow from upstream is steady. Although
steady flow models [Andrews, 1991; Nelson, 1991; Nelson et al.,
1994; Smith and Wiele, 1994] may prove sufficient for general-
izing the mean flow and depositional rates within lateral sep-
aration eddies, the nonperiodic pulsations are nevertheless an
intrinsic property of eddies. The large-scale depositional ef-
fects of these pulsations are unknown, but on a small and easily
observable scale, the pulsations have a demonstrable effect:
They produce ripples that resemble wave-generated ripples
[Rubin, 1987; Rubin et al., 1990; Schmidt et al., 1993]. These
symmetrical, reversing, eddy pulsation ripples are common
near the reattachment point on sandbars in bedrock canyons
and also occur near the reattachment point on bends in sand-
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Figure 1. Schematic planform diagram showing a recircula-
tion zone in a river channel expansion; vortex structure is
schematic.

bed channels (Rubin et al.’s [1990] interpretation of Mississippi
River structures shown by Davies [1966, plates 1B and 1C]).

Sedimentologists recognize two main classes of ripples: cur-
rent ripples (those that form in currents that are unimodal in
direction) and oscillation ripples (those that form in reversing
currents such as waves). “Oscillation” ripples also form with-
out waves in the reversing flows that occur where separated
flow reattaches to the bed or bank at the downstream end of an
eddy. Ripples have been hypothesized to form by such revers-
ing flows downstream from obstacles on the seafloor [Shipek,
1962] and have been observed to form in lateral separation
eddies in rivers [Rubin, 1987; Rubin et al., 1990; Schmidt et al.,
1993]. Recognition of these ripples in recirculating eddies was
the first documentation that eddy pulsations affect sediment
transport in rivers.

Our initial hypothesis was that the oscillation ripples were
produced by vortex-induced oscillating flow. We hypothesized
that each vortex that was shed from the separation point might
cause upstream flow when its leading side impacted the bank in
the reattachment zone, followed by downstream flow when its
trailing edge hit the bank, essentially the same process as that
by which the circulation of cyclonic weather systems causes a
rotation in wind direction with the passage of a storm. Visual
inspection of the flow could not detect such a regular succes-
sion of vortices impacting the bank, and, as measurements
were to demonstrate later, flow in the zone of reattaching flow
is dominated by nonperiodic upstream-downstream flow rever-
sals; these reversals are caused by changes in location of the
instantancous reattachment point, a process that alternately
incorporates or excludes points in the reattachment zone from
the recirculating flow in the eddy. As will be shown below,
these pulsations arise spontanecously even where main stem
flow is steady.

Hypotheses for Eddy Nonperiodicity

The problem of eddy nonperiodicity can be illustrated by
considering two flow examples. One example is the compli-
cated nonperiodic flow that occurs in lateral separation eddies
behind obstacles along riverbanks. The other example is the
periodic sequence of vortices (vortex street) shed in the lee of
a cylinder in a laboratory flume [Schlichting, 1968). There are
many differences between these two flow situations: Flow in a
river typically has a higher Reynolds number than ideal vortex
streets in the lab; riverbanks are sloping, they are rougher, and
they have a wide variety of roughness scales; constrictions in
rivers are geometrically more complex than a cylinder; and
riverbank constrictions occur at the margins of the flow,
whereas vortex streets occur in the lee of isolated obstacles.
Because of these many differences, it is impossible to attribute
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the nonperiodicity of lateral separation eddies to any single
cause without conducting experiments such as those described
below. In this study we test the hypothesis that placing an
obstacle such as a cylinder adjacent to a smooth wall is suffi-
cient to cause the leeside flow to change from a periodic vortex
street to a nonperiodically pulsating eddy.

General Causes of Periodicity and Nonperiodicity

Periodic behavior of a system can result either from periodic
external forcing (for example, periodic variations in sediment
transport that occur in response to periodic tidal currents) or
from intrinsic response to steady forcing (periodic tides that
form in response to steady orbital forcing). Similarly, nonpe-
riodicity can result from the same two causes: external forcing
or intrinsic behavior. It is easy to understand how unsteady
external forcing (such as unsteady main stem discharge or
unsteady wind-driven circulation within eddies) might cause
nonperiodicity. But nonperiodicity can also result from intrin-
sic behaviors, even where forcing is steady or periodic. Intrinsic
nonperiodic behavior can arise both in low-dimensional deter-
ministic systems with only a few degrees of freedom (chaos
such as Lorenz’s [1963] convection cells) and in high-
dimensional stochastic systems with a large number of degrees
of freedom (motion of a molecule in a volume of gas). In the
former case the system has few degrees of freedom, but each
time it returns to conditions that are nearly similar (but not
exactly similar) it evolves differently; nonperiodicity results
from this sensitive behavior. In the latter case the system is
nonperiodic because it has so many degrees of freedom that it
does not return to initial conditions that are even approxi-
mately similar.

One of the goals of this investigation is to characterize the
origin of nonperiodic eddy pulsations. Our approach is to show
that the nonperiodicity occurs even where external forcing is
constant, thereby demonstrating that nonperiodicity is intrinsic
to the system. The next step is to determine whether this
nonperiodicity results from low-dimensional determinism
(chaos) or high-dimensional processes.

Several techniques have been used successfully to document
the role of chaos in weakly turbulent flows such as Couette
cylinder flow or convection rolls [Gollub and Swinney, 1975;
Gollub et al., 1980]. In general, experimental conditions must
be only weakly turbulent, transitional between periodic and
nonperiodic (turbulent). In previous experiments this has been
accomplished by adjusting the Reynolds or Prandtl number.
Time series are then recorded at a point in the fluid and are
examined for period doubling, intermittency, or other proper-
ties that are characteristic of chaos. In the present experiments
an abrupt transition to turbulence is induced not by changing
the Reynolds number, but rather by making a single change to
the geometry of the flow.

Methods
Observational Techniques

Field observations of ripples and eddy pulsations were con-
ducted in the Colorado River in Grand Canyon. Detailed de-
scriptions of ripples in recirculating eddies, their spatial distri-
bution, rotary migration patterns, and internal structure are
given by Rubin [1987] and Rubin et al. [1990]. Flow velocities in
areas of reattaching flow were measured using a two-channel
electromagnetic current meter, sampling the longitudinal and
cross-channel velocities once each second for durations as long
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Table 1. Generalized Flow Conditions for Field and
Laboratory Measurements
Width Main Radius of
of Stem  Obstacle or
Depth Channel, velocity, Constriction, Reynolds
of Channel m m/s’ m Number
Colorado meters 100 1 10-100  10°-107
River
Large decimeters 4.0 1 2.5 10°-10°
flume : :
Small millimeters 0.15 0.1 0.016 10%-10°
flume :

as 24 hours. The time-varying location of the reattachment
point was monitored by observing flags that were placed in the
flow along the bank; the reattachment point was identified by
locating the pair of adjacent flags with diverging orientations.
In some experiments, flags were monitored at 15-min intervals
for several hours, and in other experiments, flags were moni-
tored continuously for durations of 1 hour. Precision of such
measurements depends on flag spacing; for the 125-cm spacing
used to collect the data reported here, precision is +62.5 cm,
which corresponds to less than 5% of the maximum reattach-
ment point excursion.

To insure that the observed eddy pulsations did not merely
reflect unsteadiness of main stem flow, measurements were
made at times when discharge was nominally steady (discharge
from the upstream Glen Canyon Dam was regulated to be
constant). Stage gauge data that were collected 100 km up-
stream and 40 km downstream from the current meter site
(every 15 min) indicate that during the time of velocity mea-
surement, main stem discharge was 240 m®/s with a standard
deviation of 2 m>/s. During the time when the reattachment
point location was monitored, stage gauge data (96 km up-
stream) indicate a mean discharge of 430 m®/s with a standard
deviation of 2 m*/s. Generalized flow conditions for the field
and laboratory flows are given in Table 1.

Two of the velocity time series were made using an electro-
magnetic current meter in a 30-m-long lateral separation eddy
created in a 4- m-wide flume at the University of Tsukuba,
Japan. One time series was collected 5 m downstream from the
separation point, and one was collected near-the reattachment
point (22 m downstream from the separation point and 0.75 m
from the sidewall). The flume was described by Ikeda [1983],
and related lateral separation experiments using the same
channel geometry were described by Schmidt et al. {1993].

Flow measurements were also made using a hot wire meter
in a 15-cm-wide flume. Measurements were made in the lee of
a cylinder (3.2 cm diameter for results presented here) that was
isolated in the center of the flow in some experiments and
adjacent to a sidewall or a flow-parallel plate in others. Three
hundred time series were collected through the wakes and
recirculation zones in these experiments, for a variety of flow
conditions, cylinder diameters, and flow measurement loca-
tions. The time series were 1-30 min in duration and sampled
at 20 Hz. '

The flume that was developed for this work was built to
maximize steadiness of flow. The pump was driven by a motor
with a nominal speed accuracy of 0.2%. To minimize pump-
indyced vibration and pulsations, the entire pumping system
was decoupled from the flume. Water was pumped into an
isolated head tank where it was driven by gravity through a
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tube into a second head tank at the upstream end of flume. At
the downstream end of the flume, water flowed through a tube
into an isolated tail tank. All flow through the flume was driven
by gravity; the pump transferred water from the tail tank to the
upper of the two head tanks.

For the results presented in this paper, mean flow velocities
(measured upstream from obstacles) were approximately 10
cm/s, standard deviations were less than 0.1 cm/s (1%), and
maximum variations were =0.2 cm/s (2%). It was necessary to
insure such ﬂow steadiness, so that observed unsteadiness of
leeside flow could be attributed to intrinsic processes such as
vortex shedding or self-organization of eddy recirculation
rather than to variability of external forcing (unsteadiness of
pumping or vibrations in the flume).

Spectfal Analysis

Two kinds of data analysis techniques were applied to the
time series that were collected during this study. Spectral anal-
ysis was used to search for periodicity, and nonlinear forecast-
ing was used to search for deterministic nonperiodicity (chaos).
Spectral ana1y51s was performed using a fast Fourier transform
algorlthm Each time series was divided into many -equal-
length pieces (using a Hann window); window length was cho-
sen so that the pieces were long with respect to the vortex-
shedding period. Using long pieces allows longer periodicity to
be detected, and using multiple pieces allows confidence inter-
vals to be determined for the power spectral calculations. The
mean power at each frequency was computed by averaging the
power of the individual pieces at that frequency. The 95%
confidence limits were computed to be the mean value *+ 2
standard deviations of the power calculated at each frequency.

Although spectral analysis is a useful technique for identi-
fying structure in a time series, this technique can-only identify
structure that is periodic or linear. (A periodic signal is linear
because the value x at any time ¢ is a linear function of one or
more preceding values. For example, a periodic sawtooth sig-
nal can be described by x, = —~x,_;, and a sine curve can be
described using a linear combination of two.preceding values
of x.) But a time series may contain a nonlinear structure in
addition to linear structure, and spectral analysis cannot rec-
ognize such nonlinear structure. Nonlinear forecasting, dis-
cussed in the following section, is one technique for identifying
nonlinear structure.

Nonlinear Forecasting

Several techniques have been developed recently to extract
information about the nonlinear structure of a time series or
spatial image [Farmier and Sidorowich, 1989; Sugihara and May,
1990; Casdagli, 1992; Rubin, 1992; Theiler et al., 1992, 1994;
Casdagli and Weigend, 1994]. The underlying principle of this
time series forecasting is to predict future values of a time
series by consulting a catalog of how the system evolved at
otheér times when initial conditions were similar. Predictions
are made by selecting an event (predlctee) with a known his-
tory and known next value, searching the catalog for one or
more events where the recent time history approximates the
time history of the predictee, and then using the next values of
these nearest neighbors in the catalog to predlct the next value
of the predictee. For some purposes, such as weather forecast-
ing, financial forecasting, or noise reduction, predicting the
future is the primary goal of the forecasting. In contrast, for the
purpose of characterizing system dynamics, predictions are
made to learn what kinds of models perform best.
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The idea of relating a sequence of past values of a time
series to the future is based on physical principles, not merely
statistical convenience [Packard et al., 1980; Takens, 1981]. The
underlying principle is to use multiple values of a single vari-
able as surrogates of many variables that may be required to
define the initial state of a physical system for which the future
is to be predicted. For example, a single value in a'time series
of velocity defines only the velocity, but two successive veloc-
ities define both velocity and acceleration.

The forecasting technique begins by splitting a time series
into two pieces. One piece (a catalog or learning set) is used to
relate the recent history of the series to the next value in the
series. The other piece (testing set) is used to test the predic-
tive ability of the catalog. In this forecasting process the recent
history of the system for m steps through time (¢) can be
represented by a single point in m-dimensional space; the
coordinates of that point are (x,, X, _;, X, 5, ***, X, 41 _m)-
To make each prediction, a predictee sequence of m values in
the time series is placed (or embedded) in this m-dimensional
space, and the least squares method is used to identify the
m-dimensional sequences in the learning set that are closest to
the predictee. (This process of locating nearest neighbors is
arithmetically equivalent to sliding the predictee sequence
over a plot of the learning set time series and looking for the
m-point sequences of the learning set that most closely match
the predictee.) At least m + 1 of these nearest neighbors are
located, so that least squares can be used to solve

m

X1 = agt E QX1
i=1

€y

for the m + 1 coefficients (e, * -, «,,,) that best relate x, ,
t0 X, X, _1,X,_5, "* ", X, 1, i0 the learning set. The second
step in making each prediction requires that (1) be solved
again, this time substituting the coordinates of the predictee
(X5 X, 90 X,_5,*"*, X, 4 1_,) and the solved values for the
coefficients (g, * -, @,,). This second solution of (1) employs
the relation determined from the learning set to predict x, , ;
for the testing set. '

Thus, to predict each point in the testing set requires that (1)
be solved twice (first to learn the yalues of the coefficients that
best relate the past to the future in the learning set, second to
use those coefficients and the predictee sequence to predict the
next value in the testing set). Each predicted value is then
compared with the actual value in the testing set, and predict-
ability is quantified either by the rms error of the predictions or
by the correlation coefficient between predicted and observed
values. '

If the entire set of points in the learning set is used to
evaluate the constants in (1), then the technique is a multiple
linear regression, a classical statistical technique. In the newer
nonlinear technique, a smaller number of (different) nearest
neighbors in the learning set are used to reevaluate the con-
stants (ag, ***, a,,) for each prediction, thereby allowing (1)
to effectively model nonlinear relationships using small locally
linear pieces.

One application of this approach is Casdagli’s [1992] deter-
ministic-versus-stochastic forecasting technique, which mea-
sures forecasting error as a function of the number of neigh-
bors (similar events) used to make predictions. At one extreme
(stochastic linear modeling), forecasts are based on behavior
learned from all events in a learning set. These global linear
regression models maximize noise reduction but minimize sen-
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sitivity to the specific initial conditions for the event that is
being forecast. At the other extreme (deterministic nonlinear
modeling), forecasts are based on the relations learned from a
small number of events for which the initial conditions are
most similar to the event that is being forecast. In these non-
linear models, noise reduction is poorer, but sensitivity to ini-
tial conditions is enhanced. Casdagli argued that the dynamics
of a system can be characterized by the class of model that
makes the most accurate short-term. forecasts. Low-dimen-
sional nonlinear nonperiodicity (chaos) can be identified
where nonlinear models employing a small number of nearest
neighbors outperform global linear models.

Similarly, forecasting accuracy can be measured for models
that vary the embedding dimension (), to evaluate the num-
ber of active degrees of freedom of a system from which a time
series was sampled. For example, m must be at least 3 to
accurately forecast the behavior of a system with three degrees
of freedom, such as Lorenz’s [1963] simplified model of con-
vection. By applying forecasting in an exploratory manner
(performing computations to evaluate the relative perfor-
mance of a large number of models), the information con-
tained within a time series can be used to evaluate the degrees
of freedom, importance of nonlinearity, or other properties of
a physical system [Sugihara, 1994]. Additional details of these
modeling techniques are given by Casdagli [1992] and Casdagli
and Weigend [1994); the computational algorithm used in this
study is a one-dimensional application of the two-dimensional
(spatial) algorithm described by Rubin [1992].

The knowledge to be gained from these forecasting tech-
niques can be compared to that gained from spectral analysis.
Both techniques provide information about how a system op-
erates, but not the specific equations that describe the system.
Determining that a particular nonperiodic system is low di-
mensional or high dimensional, like determining the dominant
frequencies of a periodic system, is merely a first step in char-
acterizing or understanding the system.

Results
Field Observations

* Longitudinal and cross-channel flow velocities were mea-
sured near the reattachment point on bars in the Colorado
River. Typical hydraulic conditions can be approximated by a
channel width of 100 m, a Reynolds of number 10°-107, a flow
depth of many meters, and an obstacle or constriction radius of
tens or hundreds of meters (Table 1). Previous field measure-
ments within lateral separation eddies have documented peri-
odic vortex shedding near the separation point [McDonald et
al., 1994] or periodicity due o waves [Bauer and Schmidt,
1993], but our reattachment point time series are nonperiodic
(Figure 2), as was the case for alongshore flow measured by
Bauer and Schmidt [1993, Figure 7]; power at vortex-shedding
frequencies (10~ Hz) is orders of magnitude weaker than the
low-frequency pulsations (Figure 2). Spectral analysis shows
that the power in the reattachment point time series is in-
versely proportional to the square of the frequency, f. Power
that decreases following this relation is characteristic of brown
noise, which can be described as a running sum of uncorrelated
numbers. The instantaneous location of the reattachment
point (monitored using an array of flags that were placed in the
flow along the bank) also lacks any demonstrable periodicity
either in the time series (Figure 3) or power spectrum (not
shown). o
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Figure 2. Velocities measured near the reattachment point
on a bar in the Colorado River in Grand Canyon, Arizona,
October 22, 1990. Velocities were measured with an electro-
magnetic current meter sampling at 1 Hz; water depth was 1 m;
current meter was 10 cm below the water surface. Location was
100 km downstream from Lees Ferry, Arizona; stage data that
were collected every 15 min at sites 100 km upstream and 40
km downstream during a 3-day interval spanning the time of
the velocity time series indicate that dischaige was 240 m?/s
with a standard deviation of 2 m’/s. (2) Plot of 30,000 s of the
upstream-downstream component of velocity. The mean up-
stream-downstream component has a value of —4.7 cm/s, in-
dicating that the current meter was slightly upstream from the
time-averaged location of the reattachment point. (b) The first
5000 s of data in Figure 2a. (c) Power spectral density calcu-
lated from a 49,920-5 time series subdivided into 195 subsets of
256 s. The thin solid line represents the mear power spectral
density for all 195 subsets; dashed lines represent the 95%
confidence interval, calculated from the distribution of power
computed from the standard deviation of the 195 subsets; the
thick line is a best fit line to illustraté that the power is inversely
proportlonal to the square of the frequency f. Brown noise (a
running sum of uncorrelated random numbers) has a power
spectrum with this slope.

Lab Observations

Two kinds of laboratory experiments were conducted to
investigate the conditions that produce nonperiodic eddy pul-
sations. In one set of experiments, hot wire measurements
were made in the vortex street in the lee of an isolated cylinder
and in the lateral separation eddy behind a cylinder placed
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alongside a flow-parallel plate (Figure 4). Flow depth was 0.6
cm, width was 15.0 cm, cylinder diameter was 3.2 cm, and the
Reynolds number was 10°-10° (Table 1). Where the cylinder
was isolated in the flow, the character of vortex shedding varied
with flow strength. In the slowest flows in which vortex shed-
ding occurred, shedding was unstable and intermittent (Figure
5a). In slightly faster flows, vortex shedding became more reg-
ular (Figures 5b and Sc).

At Reynolds numbers lower than the range that we investi-
gated (below approximately 10%), flow in the lee of a cylinder
takes the form of a pair of fixed eddies [Batchelor, 1967]. At the
somewhat higher Reynolds numbers of our experiments (10*-
10%), flow in the wake of an isolated cylinder is periodic, and
power spectra are dominated by a peak at the vortex-shedding
frequency (Figure 5b). This periodicity arises as vortices that
are shed from the cylinder are advected downstream past the
hot wire probe. When a plate is placed alongside the cylinder
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Figure 3. Plot showing the changing location of the reattach-
ment point on a bar (196 km downstream from Lees Ferry,
Arizona) in the Colorado River. Instantaneous reattachment
point location was measured on May 22, 1991, using flags that
were placed in the flow every 1.25 m along the bank. Release
from Glen Canyon Dam (approximately 220 km upstream) was
nominally steady, and stage gauge data indicate that discharge
96 km upstream from this field site was 430 m*/s with a stan-
dard deviation of 2 m%s.
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Figure 4. Experimental setup for small-flume experiments;
flume, cylinder, and plate are drawn to scale, but vortex struc-
ture is schematic. Flume width was 15 cm; cylinder diameter
was 3.2 cm; pldte length was 30 cm. -

(Figures 4 and 6), however, the character of the flow becomes
grossly different, even if flow conditions are otherwise un-
changed. Adding the plate causes the vortex street to be sup-
pressed and produces a lateral separation eddy in the lee of the
cylinder. Flow in the eddy is qualitatively similar to that in the
river: The flow is nonperiodic (Figures 2 and 6).

The point of this experiment was not to model flow in the
river with a small-scale analog. Rather, the point was to learn
if the complexities in the field (high Reynolds number, com-
plex geometry, or possible unsteadiness in main stem flow due
to wind or other processes) are a necessary condition for ed-
dies to pulsate irregularly. The results demonstrate that such
complexities are not necessary; eddies pulsate irregularly even
at a low Reynolds number in a steady flow with simple geom-
etry.

The second experiment was conducted to look for spatial
variability in flow character within a single recirculating eddy.
Flow within an eddy in the 4-m-wide flume was measured near
the separation and reattachment points. The time series col-
lected near the separation point displays a periodic structure
(Figure 7a), and the power spectrum has a broad peak at
approximately 0.15-0.20 Hz, corresponding to a perlod of ap-
proximately 5-6 s, the period of vortex shedding observed
during the experiment. This periodic Vortex shedding occurs
despite the irregular shape of the obstacle (pile of sandbags)
along the sidewall of the flume. In the sime main stem flow,
however, flow near the reattachment point was nonpeériodic
(Figures 7b and 7c). The spatial difference is most clearly
evident when the ratio of power in the two regions is con51d-
ered (Figure 7d). At the vortex-shedding frequency, power
near the separation point is almost an order of magnitude
greater than near the reattachment point. In contrast, low-
frequency power (representing nonperiodic pulsations) is
greater near the reattachment point than at the separatlon
point.
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Discussion
Obstacle Geometry as a Cause of Nonperiodicity

These experiments demonstrate that nonperiodicity can be
induced merely by a single change in obstacle geometry. Spe-
cifically, when a flow-parallel plate is placed alongside a cylin-
der, leeside flow can be induced to change from a periodic
vortex street to an 1rregu1arly pulsating eddy (Figure 6). The
hlgher Reynolds numbers more complex geometry, and pos-
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Figure 5. Hot wire velocity measurements and power spectra
of flow in lee of a cylinder without a plate, as shown in Figure
4a. Velocities were measured at 20 Hz. (a) Intermittent vortex
shedding at velocities just above the threshold for vortex shed-
ding. Hot wire probe was positioned 7.2 cm downstream from
the cylinder-and 0.8 cm off axis. Flow depth was 0.6 cm; mean
veloc1ty at 0.3 cm above the bed was 9.7 cm/s (with no cylinder
in flume). (b) Periodic vortex shedding. Depth was 0.6 cm;
mean velocity at middepth upstream from the cyhnder was 10.1
cm/s (standard deviation of 0.05 cm/s). Hot wire probe was
posmoned 7.0 cm downstream from the cylinder and 0.6 cm off
axis; 10 s of a 2-min series. (c) Power spectral density of the
complete time series in Figures 5a and 5b. The solid lines
represent power spectral density; dashed lines represent the
95% confidence intervals. Spectral estimates for both time
series were performed usmg a total series length ‘'of 2048 points
(102.4 s) broken into 16 pieces of 128 samples. The velocity
increase from Flgure 5a to Figure 5b caused vortex sheddlng to
become greater: in power and higher in frequency.
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sible unsteadiness of natural rivers, while perhaps contributing
to flow variability, are not necessary for irregular eddy pulsa-
tions.

Flow Past a Cylinder Located Away From the Wall

Vortex shedding from cylinders occurs over a wide range of
Reynolds numbers (approximately 5 X 10" to 10* according to
Batchelor [1967] and Schlichting [1968]), but the process is
most regular within the lower part of this range [Roshko, 1954;
Gaster, 1969]. The frequency of vortex shedding, n, is given by

n=SU/d 2)

where d is cylinder diameter, U is free stream velocity, and §
is the dimensionless Strouhal number (nd/U). For the range
of Reynolds numbers of the small-flume experiments (500 to
1000), the Strouhal number remains approximately constant at
0.2 [Schlichting, 1968].

Regularity of vortex shedding is also favored by two-
dimensionality of the flow, for reasons that are explained by
(2). Where an obstacle has differing diameters (such as cones
studied by Gaster [1969]) different parts of the obstacle have
different nominal shedding frequencies. Spanwise coupling be-
tween adjacent locations along the obstacle results in modu-
lated pulses of vortices (increasing and decreasing amplitude),
a phenomenon that Gaster observed in the lab and was able to
model as a Van de Pol oscillator with a weak nonlinear term.

Just as shedding can be complicated by a spanwise gradient
in diameter, Gaster hypothesized that differences in shedding
frequency could also be induced by shear in the flow (a spatial
gradient in velocity rather than obstacle diameter). It is not
known whether the modulated vortex shedding observed in
some of the small-flume experiments (Figure Sa) results from
this process or from another instability.

Period doubling has been documented at the transition to
chaos or turbulence in some previous studies of fluids [Gollub
et al., 1980; Rockwell et al., 1991], but no period doubling was
observed in these experiments. At some locations in the wake
of the cylinder successive vortices were alternately strong and
weak (Figure 6a). Although this behavior gave the appearance
of period doubling (as might result from the pairing up of
successive vortices [Siggia and Aref, 1980; Cherry et al., 1984;
Rockwell et al., 1991]), in this case the alternations were caused
by off-axis placement of the hot wire probe within the symmet-
rical wake. When the probe was placed near, but not exactly
along, the axis of the wake, successive vortices were alternately

Periodic vortex shedding (Fig. 5B}

- -Intermittent vortex shedding
. (Fig. 5A)

Power Spectral Density
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Figure 6. Effect of adding a plate adjacent to a cylinder.
Except for addition of the plate, flow conditions were un-
changed for these velocity time series. Without the plate, vor-
tex shedding was periodic, with a fundamental frequency of
approximately 1 Hz. When the plate was added, the system
became nonperiodic. Mean location of the reattachment point
on the plate was 16 cm downstream from cylinder. (a) Repre-
sentative 25-s velocity time series of flow in the lee of an
isolated cylinder and flow at the same location when the plate
was placed alongside the cylinder. For both time series the hot
wire probe was positioned 12.0 cm downstream from the cyl-
inder and 0.5 cm off axis. Main stem flow (measured upstream
from cylinder) is shown for comparison. Mean main stem ve-
locity was 9.6 cm/s; standard deviation was 0.08 cm/s. (b) Power
spectral density (with 95% confidence intervals) of the com-
plete velocity time series in Figure 6a: 7.3 min without plate, 29
min with plate, and 7.1 min of main stem flow. The origin of
the very weak peak at 3.2 Hz is unknown. All three time series
were broken into 256-point (12.8-s) pieces for these power
spectral calculations.

weak and strong, depending on whether the vortex passing the
probe had been shed from the near or far side of the cylinder.
Thus these alternations in amplitude of successive vortices
were not period doubling transitional with chaos.

Flow Past an Obstacle Adjacent to a Wall

Experiments and computations have shown that the steadi-
ness of some fluid processes varies with Reynolds number. For
example, flow between rotating cylinders exhibits a variety of
flow regimes that depend on Reynolds number [4nderek et al.,
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Figure 7. Electromagnetic current meter velocity time series and power spectral density measured in the
4-m-wide flume. (a) Time series collected at 1 Hz near the separation point (2 min from an 18-min record).
Peaks represent the passage of vortices past the current meter. (b) Time series collected near the reattachment
point (2 min from a 46-min record). (c) Power spectral densities of the complete time series from Figures 7a
and 7b. Shaded areas represent the 95% confidence intervals. Near the separation point, vortex shedding was
observed to occur with a mean period of approximately 6 s (0.17 Hz frequency). The power spectrum displays
a relatively broad peak at this frequency. Near the reattachment point, the time series is less regular, and the
power spectrum has no peak at the vortex-shedding frequency. For both curves of power spectral density,
window size was 64 s. (d) Plot of the ratio of power at the separation point to power at the reattachment point.
As the flow moves from the separation point to the reattachment point, vortex shedding decreases in power,

while low-frequency pulsations gain power.

1986]. In our small-flume experiments, however, merely plac-
ing a plate alongside a cylinder is sufficient to cause the leeside
flow to change from periodic to nonperiodic (Figure 6); the
change from periodicity to nonperiodicity does not require a
change in Reynolds number.

Where a cylinder is isolated in a flow, vortices that are shed
from the cylinder are advected downstream, and only a small
amount of recirculating fluid remains in the lee of the cylinder.
Consequently, similar conditions recur after each vortex is
shed. In contrast, where a cylinder is adjacent to a plate, a large
recirculating eddy is trapped behind the cylinder, and similar
conditions do not recur after each vortex is shed. Flow struc-
tures (pressure and momentum distribution in the recirculat-
ing flow) feed back through the recirculating flow to influence
future flow in the eddy. Reattachment of flow structures such
as vortices alters the reverse pressure gradient, which subse-
quently influences the strength of the recirculating flow [Driver
et al., 1987; Simpson, 1989)]. Any such self-induced unsteadi-

ness in the recirculating flow can be expected to feed back and
affect the flow in the future, just as has been observed for
recirculating flows that are artificially pulsed [Simpson, 1989].
The basic idea is that flow in the wake of the cylinder recircu-
lates, thereby influencing future flow and future vortex shed-
ding in the eddy [Driver et al., 1987; Simpson, 1989]. In this
regard, the process resembles simple mathematical models
of chaotic systems such as convection rolls modeled by
Lorenz [1963] or the periodically kicked rotor modeled by
Jensen [1987]. In these mathematical models the future be-
havior of the system depends on the previous conditions
(analogous to the pressure and momentum distribution
throughout an eddy).

An additional complication in the recirculating eddy flow is
that the wake interacts with the bank. As vortices are advected
from the separation point toward the reattachment point, they
deform and interfere with each other [Cherry et al., 1984; Simp-
son, 1989], eventually becoming grossly deformed when they
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impact the bank or sidewall. This deformation causes a reduc-
tion in periodicity (Figure 7).

This nonperiodicity of recirculating flow in lateral separation
eddies is similar to results for flow over negative steps. Simpson
[1989, p. 222] reported, “The period between flow reversals in
the reattachment region appears to be random with no appar-
ent correlation between the near-wall flow upstream and
downstream of reattachment.” This idea of randomness, how-
ever, appears to contradict the deterministic process whereby
high-momentum structures in the wake “cause greater back-
flow at a later time” [Simpson, 1989, p. 223] (citing Driver et al.
[1987]). One of the goals of the following section is to use
nonlinear forecasting techniques to search for a deterministic
structure in the eddy pulsation time series. If such a predict-
able structure could be demonstrated, the hypothesis of ran-
domness could be falsified.

Nonperiodicity and Degrees of Freedom

At least three classes of systems can exhibit nonperiodic
behavior: (1) high-dimensional (many degrees of freedom)
linear systems, (2) low-dimensional nonlinear systems (chaos),
and (3) high-dimensional nonlinear systems. Ideally, we would
like to characterize nonperiodic eddy pulsations as one of
these kinds of systems. In the first half of this century, Landau
[1944] proposed that turbulence (nonperiodic flow) resulted
from a large number of modes of excitation of a fluid (high-
dimensional linearity), but in the last few decades, it has been
shown theoretically and experimentally that some examples of
nonperiodic flow are low-dimensional chaos [Lorenz, 1963; Ru-
elle and Takens, 1971; Gollub and Swinney, 1975; Gollub et al.,
1980]. The experimental studies that have documented low-
dimensional chaos have focused on flows that are at the thresh-
old of turbulence (transitional with laminar flow).

Several alternate explanations that do not involve low-
dimensional chaos (spin glass relaxation, spatial noise ampli-
fication, and transients) have been proposed recently and are
noted by Crutchfield and Kaneko [1988]. They argue that tran-
sient effects can dominate a system for long time intervals, and
they therefore question the relevance of low-dimensional
chaos to fully developed turbulence. As an example, they pre-
sented a computational example of a nonlinear system with a
moderately high number of degrees of freedom (128). Their
system eventually stabilizes to become periodic, but the time to
attain periodicity is extremely long (10*° years, if iterations are
performed at the rate of 10'® per second). For practical pur-
poses the system is nonperiodic, despite the fact that it would
theoretically become periodic.

The computational system described above has only a mod-
erately high number of degrees of freedom. According to
Frisch and Orszag [1990] the number of degrees of freedom of
a turbulent fluid is given by R*/# per unit volume L3, where R
is the Reynolds number, and L is the length scale used to
calculate R. For the Reynolds numbers and cylinder sizes in
our experiments, the calculated number of degrees of freedom
is of the order of 10®. Although this relation may define the
potential number of degrees of freedom in a fluid, the fluid
may not actively employ all of them [Gershenfeld and Weigend,
1994].

Low-dimensional chaos (nonperiodicity with few degrees of
freedom) such as the Lorenz system requires both low dimen-
sionality (by definition) and nonlinearity (to allow nonperiod-
icity in a low-dimensional system). We used two forccasting
techniques to evaluate the hypothesis that nonperiodicity in
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Figure 8. Plot showing rms prediction error as a function of
the number of neighbors (k) used to make each prediction.
Where k is small, forecasts are nonlinear and deterministic;
where k is large, models are linear and/or stochastic [Casdagli,
1992]. The relative performance of these deterministic-versus-
stochastic models can be used to infer properties of the system
dynamics. Where minimum prediction errors are for models
with low k, the system is deterministic and nonlinear (for
example, the Lorenz equations). In contrast, where models
with high & perform best (as is the case with eddy pulsations),
the system is linear and/or stochastic. None of the eddy flows
had the forecasting signature of nonlinear deterministic sys-
tems.

recirculating eddies (in the lab and in Grand Canyon) results
from low-dimensional chaos. (More precisely, we attempted to
falsify the null hypothesis that the observed flows were high-
dimensional linear systems as proposed by Landau [1944].)
First, we used the deterministic-versus-stochastic technique
[Casdagli, 1992] to look for nonlinear structure in the time
series. The best models (those with the lowest error) are purely
linear (Figure 8), which does not contradict the hypothesis that
this turbulence is linear.

The second technique is an attempt to determine the num-
ber of degrees of freedom of the lateral separation eddy. An
upper limit to the number of active degrees of freedom can be
estimated from model performance as a function of embed-
ding dimension, or m in (1) [Gershenfeld and Weigend, 1994].
In the lateral separation eddy (Figure 6a) the best forecasting
models employ an embedding dimension approaching 100, too
high to support the idea of low-dimensional chaos. Thus this
result fails to contradict Landau’s hypothesis that turbulence is
high-dimensional, and the deterministic-versus-stochastic tech-
nique fails to identify nonlinearity.

In some situations, low-dimensional chaos can be masked by
stochastic effects such as noise or measurement error. In ex-
periments with a computer-generated chaotic system, stochas-
tic effects resulting from as little as 10% measurement error
can be sufficient to mask low-dimensional dynamics [Rubin,
1992]. In the case of the data from recirculating flows in Grand
Canyon, measurement error for the electromagnetic current
meter is only a few percent, but we cannot rule out the possi-
bility that the nonperiodicity results in part from system noise
such as flow unsteadiness due to wind, waves, main stem flow
pulsations caused by pulsations of upstream eddies, or other
causes. In the case of the lab experiments, however, such ef-
fects are minimal. In this case, changing the obstacle geometry
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(placing a plate adjacent to the cylinder) is sufficient to cause
nonperiodicity to arise within the system. This nonperiodicity
apparently results from high-dimensional processes rather
than from low-dimensional nonlinearity.

Conclusions

1. For a wide range of experimental conditions, flow in the
lee of an isolated cylinder is a periodic sequence of vortices.
When a plate is placed adjacent to the cylinder, however,
leeside flow takes the form of a lateral separation eddy that
pulsates nonperiodically in size and velocity. These nonperi-
odic pulsations in recirculating flow arise spontaneously under
steady forcing, just as periodic vortex shedding arises under
steady forcing in the lee of an isolated cylinder.

2. Two processes are hypothesized to be responsible for
the nonperiodic eddy pulsations. First, vortices and other flow
structures in the wake of the cylinder are recirculated within
the eddy and can alter the pressure and momentum distribu-
tion in the eddy, thereby influencing future circulation. Second,
vortices that are shed from the cylinder become deformed as
they impact and interfere with other deforming vortices.

3. Our computational techniques were unable to demon-
strate that any of the nonperiodic flows result from low-
dimensional nonlinear processes.
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